分析 求出原函數(shù)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的最小值,求出此時(shí)x的值,再求出此時(shí)的函數(shù)值,由直線方程的點(diǎn)斜式求得斜率k最小時(shí)直線l的方程.
解答 解:由y=x3-3x+1,得y′=3x2-3,
則y′=3(x2-1)≥-3,
當(dāng)y′=-3時(shí),x=0,
此時(shí)f(0)=1,
∴斜率k最小時(shí)直線l的方程為y-1=-3(x-0),即3x+y-1=0.
故答案為:3x+y-1=0.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,過(guò)曲線上某點(diǎn)的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=5sin($\frac{π}{6}$x+$\frac{π}{6}$) | B. | f(x)=5sin($\frac{π}{6}$x-$\frac{π}{6}$) | C. | f(x)=5sin($\frac{π}{3}$x+$\frac{π}{6}$) | D. | f(x)=5sin($\frac{π}{3}$x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | np(1-p) | B. | np | C. | n | D. | p(1-p) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com