如圖,
⊥
,且|
|=|
|,C點在以O(shè)為圓心|
|為半徑的圓弧AB上,若
=x
+y
,則x+y的范圍是:
.
考點:平面向量的基本定理及其意義
專題:計算題,作圖題,平面向量及應(yīng)用
分析:由題意作圖如下,可知x+y=cosa+sina(0≤a≤
),從而可得其取值范圍.
解答:
解:如下圖:
=x
+y
=cosa
+sina
,
則x+y=cosa+sina(0≤a≤
),
故答案為[1,
].
點評:本題考查了平面向量的基本定理及其幾何意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)集合{1,a
2}={1,a},則a=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={x||2x-1|<3},B={x|
<0},則A∩B=( 。
A、(-1,)∪(2,3) |
B、(2,3) |
C、(-,0) |
D、(-1,) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
用反證法證明“a,b∈N*,ab可被5整除,那么a,b中至少有一個能被5整除”時,假設(shè)的內(nèi)容是( 。
A、a不能被5整除 |
B、b不能被5整除 |
C、a,b都不能被5整除 |
D、以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)Z
1=1+i,Z
2=-1+i,復(fù)數(shù)Z
1和Z
2在復(fù)平面內(nèi)對應(yīng)點分別為A、B,O為原點,則△AOB的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(1)函數(shù)y=
x(1-x)的單調(diào)區(qū)間,并求極值;
(2)求函數(shù)y=4x
3+3x
2-36x+5在區(qū)間[-2,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知某家企業(yè)的生產(chǎn)成本z(單位:萬元)和生產(chǎn)收入ω(單位:萬元)都是產(chǎn)量x(單位:t)的函數(shù),其解析式分別為:z=x3-18x2+75x-80,ω=15x
(1)試寫出該企業(yè)獲得的生產(chǎn)利潤y(單位:萬元)與產(chǎn)量x(單位:t)之間的函數(shù)解析式;
(2)當(dāng)產(chǎn)量為多少時,該企業(yè)能獲得最大的利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)y=lnx-8x
2,則此函數(shù)在區(qū)間(
,
)和((1,+∞)內(nèi)分別( 。
A、單調(diào)遞增,單調(diào)遞減 |
B、單調(diào)遞增,單調(diào)遞增 |
C、單調(diào)遞減,單調(diào)遞增 |
D、單調(diào)遞減,單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)集合A={m-2,-3},b={2m-1,m-3},若A∩B={-3},則m的值為
.
查看答案和解析>>