(本小題滿分13分)
設(shè)函數(shù)的導函數(shù)為,且。
(Ⅰ)求函數(shù)的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)的極值。
(Ⅰ)(Ⅱ)當x=-3時,有極大值27;當x=1時,有極小值-5
解析試題分析:(Ⅰ)因為, 1分
所以由,得a=3, 3分
則。
所以, 4分
所以函數(shù)的圖象在x=0處的切線方程為。 6分
(Ⅱ)令,得x=-3或x=1。 7分
當x變化時,與的變化情況如下表:
11分x (-∞,-3) -3 (-3,1) 1 (1,+∞) + 0 - 0 + ↗ 27 ↘ -5 ↗
即函數(shù)在(-∞,-3)上單調(diào)遞增,在(-3,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增。
所以當x=-3時,有極大值27;當x=1時,有極小值-5。 13分
考點:導數(shù)的幾何意義及用導數(shù)求函數(shù)極值
點評:函數(shù)在某點處的導數(shù)等于該點處的切線斜率,求函數(shù)極值先要通過導數(shù)求的極值點及單調(diào)區(qū)間,從而確定是極大值還是極小值
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
若函數(shù)在區(qū)間(a,a+)上存在極值,其中a>0,求實數(shù)a的取值范圍;
如果當時,不等式恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)。
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)存在兩個零點,且滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)y=f(x)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)y="f(x)" 的圖象上任意一點的切線斜率為k,試求的充要條件;(3)若函數(shù)y=f(x)的圖象上任意不同的兩點的連線的斜率小于1,求證。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)(…是自然對數(shù)的底數(shù))的最小值為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)已知且,試解關(guān)于的不等式 ;
(Ⅲ)已知且.若存在實數(shù),使得對任意的,都有,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)已知函數(shù)
(Ⅰ)設(shè)在區(qū)間的最小值為,求的表達式;
(Ⅱ)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知命題P:函數(shù)是R上的減函數(shù),命題Q:在 時,不等式恒成立,若命題“”是真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù),若對于任意,總存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于函數(shù),若存在x0∈R,使方程成立,則稱x0為的不動點,已知函數(shù)(a≠0).
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com