【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠需要對(duì)這些產(chǎn)品的性能進(jìn)行檢測(cè)現(xiàn)決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào)
(1)如果從第8行第4列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的3件產(chǎn)品的編號(hào);(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),抽取的100件產(chǎn)品的安全性能和環(huán)保性能的檢測(cè)結(jié)果如下表(橫向和縱向分別表示安全性能和環(huán)保性能):
(i)若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為34%,求的值;
(ii)若,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率.
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | m | 4 | n |
【答案】(1) 163,567,199 ;(2)(i) (ii).
【解析】
(1)在隨機(jī)數(shù)表中找到第8行第4列,依次選出小于700的三位數(shù)即得到答案;(2)結(jié)合表格中的數(shù)據(jù)和產(chǎn)品環(huán)保性能是優(yōu)等的概率是34%,求出m的值,然后代入求出n的值,運(yùn)用枚舉法列舉出所有的可能性,找出符合條件的可能性,求出概率.
(1)依題意,最先檢測(cè)的三件產(chǎn)品的編號(hào)為163,567,199;
(2) (i)由,得.
,
(ii)由題意: 且,所以滿足條件的有:
共12組,且每組出現(xiàn)的可能性相同,其中環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少有共4組,所以環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)不同極值點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:對(duì)任意,恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的10件產(chǎn)品中,有8件合格品、2件不合格品,合格品與不合格品在外觀上沒(méi)有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計(jì)算:
(1)抽出的2件產(chǎn)品恰好都是合格品的抽法有多少種?
(2)抽出的2件產(chǎn)品至多有1件不合格品的抽法有多少種?
(3)如果抽檢的2件產(chǎn)品都是不合格品,那么這批產(chǎn)品將被退貨,求這批產(chǎn)品被退貨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)在R上為偶函數(shù)且在單調(diào)遞減,若時(shí),不等式恒成立,則實(shí)數(shù)m的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列是公比為正數(shù)的等比數(shù)列,,;數(shù)列的前項(xiàng)和為,滿足,.
(1)求,;
(2)求數(shù)列,的通項(xiàng)公式;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,若僅存在兩個(gè)正整數(shù)使得,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿足:(為常數(shù),且,).
(1)求的通項(xiàng)公式;
(2)設(shè),若數(shù)列為等比數(shù)列,求的值;
(3)在滿足條件(2)的情形下,設(shè),數(shù)列的前項(xiàng)和為,若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由國(guó)家公安部提出,國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局發(fā)布的《車(chē)輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)標(biāo)準(zhǔn)(GB/T19522-2010)》于2011年7月1日正式實(shí)施.車(chē)輛駕駛?cè)藛T酒飲后或者醉酒后駕車(chē)血液中的酒精含量閥值見(jiàn)表.經(jīng)過(guò)反復(fù)試驗(yàn),一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”見(jiàn)圖,且圖表示的函數(shù)模型,則該人喝一瓶啤酒后至少經(jīng)過(guò)多長(zhǎng)時(shí)間才可以駕車(chē)(時(shí)間以整小時(shí)計(jì)算)?(參考數(shù)據(jù):,)
駕駛行為類(lèi)型 | 閥值 |
飲酒后駕車(chē) | , |
醉酒后駕車(chē) |
車(chē)輛駕車(chē)人員血液酒精含量閥值
喝1瓶啤酒的情況
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com