8.若{(x,y)|$\left\{\begin{array}{l}{x+y=1}\\{x-y-3=0}\end{array}\right.$}⊆{(x,y)|y=ax2+1},則a=-$\frac{1}{2}$.

分析 首先解方程組,從而代入可得-1=4a+1,從而解得.

解答 解:解方程組$\left\{\begin{array}{l}{x+y=1}\\{x-y-3=0}\end{array}\right.$得,
$\left\{\begin{array}{l}{y=-1}\\{x=2}\end{array}\right.$;
∵{(x,y)|$\left\{\begin{array}{l}{x+y=1}\\{x-y-3=0}\end{array}\right.$}⊆{(x,y)|y=ax2+1},
∴-1=4a+1,
∴a=-$\frac{1}{2}$;
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了方程組的求解及集合間關(guān)系的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<t<1,則不等式x2-(t+$\frac{1}{t}$)x+1<0的解集是( 。
A.{x|$\frac{1}{t}$<x<t}B.{x|x>$\frac{1}{t}$或x<t}C.{x|x<$\frac{1}{t}$或x>t}D.{x|t<x<$\frac{1}{t}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列交集:
(1){x|(x-2)(x-6)=0}∩{x|x2-5x+6=0};
(2){偶數(shù)}∩{奇數(shù)};
(3){x|x+2<0}∩{x>1};
(4){1,2,3,4,5}∩{x|x=3n+1,x∈N}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)在(-∞,0)和(0,+∞)上都是減函數(shù),且f(-1)=f(2)=0,則f(x-1)>0的解集是(-∞,0)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的定義域:
(1)f(x)=$\frac{\sqrt{2x-1}}{x-2}$+1;
(2)g(x)=$\sqrt{3-2x}$+$\frac{x}{x+1}$;
(3)f(x)=$\frac{2}{\sqrt{x+1}}$+$\frac{3-x}{{x}^{2}+3x-4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=$\frac{x}{x+1}$,x∈(0,+∞)的值域是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)全集U={1,2,3,4,5},A={x|x2-6x+p=0},若B={x|x2+qx+2=0},(∁UA)∪B={1,2,3,4},求p與q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)的值域是[-3,9],則此函數(shù)的最大值、最小值分別是9和-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{-2}{{x}^{2}+2}$的取值范圍是[-1,0).

查看答案和解析>>

同步練習(xí)冊答案