甲、乙兩人參加一次射擊游戲,規(guī)則規(guī)定,每射擊一次,命中目標(biāo)得2分,未命中目標(biāo)得0分.已知甲、乙兩人射擊的命中率分別為
3
5
和p,且甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為2的概率是
9
20
.假設(shè)甲、乙兩人射擊是相互獨(dú)立的,則p的值為( 。
A、
1
4
B、
1
3
C、
2
3
D、
3
4
考點(diǎn):互斥事件的概率加法公式,相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計(jì)
分析:由題意知甲、乙兩人射擊互不影響,則本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,根據(jù)題意可設(shè)“甲射擊一次,擊中目標(biāo)”為事件A,“乙射擊一次,擊中目標(biāo)”為事件B,由相互獨(dú)立事件的概率公式可得,可得關(guān)于p的方程,解方程即可得答案.
解答: 解:設(shè)“甲射擊一次,擊中目標(biāo)”為事件A,“乙射擊一次,擊中目標(biāo)”為事件B,
則“甲射擊一次,未擊中目標(biāo)”為事件
.
A
,“乙射擊一次,未擊中目標(biāo)”為事件
.
B
,
則P(A)=
3
5
,P(
.
A
)=1-
3
5
=
2
5
,P(B)=P,P(
.
B
)=1-P,
依題意得:
3
5
×(1-p)+
2
5
×p=
9
20

解可得,p=
3
4

故選:D.
點(diǎn)評(píng):本題考查相互獨(dú)立事件的概率計(jì)算,關(guān)鍵是根據(jù)相互獨(dú)立事件概率得到關(guān)于p的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≤0
x>0
y≤2
,則目標(biāo)函數(shù)z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+x2f′(1),則f′(2)=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=4x的焦點(diǎn)為F,過F且斜率為1的直線交拋物線于A、B兩點(diǎn),動(dòng)點(diǎn)P在曲線y2=-4x(y≥0)上,則△ABP的面積的最小值為(  )
A、1
B、6
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
m
n
其中,
m
=(2cosx,1),
n
=(cosx,
3
sin2x),求f(x)的最小正周期及單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(diǎn)(2,5),g(x)=(x+a)f(x),g(x)的導(dǎo)函數(shù)為g′(x)
(Ⅰ)若曲線y=g(x)有斜率為0的切線,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若g′(-1)=0,求y=g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=8,前10項(xiàng)和S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若從數(shù)列{an}中依次取出2,4,6,8,…2n項(xiàng)按照原來的順序排成一個(gè)新的數(shù)列,求新數(shù)列的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,0),B(0,2),實(shí)數(shù)k是常數(shù),M,N是圓x2+y2+kx=0上兩個(gè)不同點(diǎn),且M,N關(guān)于直線x-y-1=0對(duì)稱,若P是圓x2+y2+kx=0上的動(dòng)點(diǎn),則△PAB面積的最大值是( 。
A、3-
2
B、4
C、3+
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一直線過點(diǎn)P(-5,-4),求:
(1)與兩坐標(biāo)軸圍成的三角形面積為5,求此直線方程.
(2)過點(diǎn)P,且與原點(diǎn)的距離等于5的直線方程.

查看答案和解析>>

同步練習(xí)冊答案