已知橢圓C:
x2
4
+
y2
3
=1
的左焦點(diǎn)為F,過(guò)F點(diǎn)的直線l交橢圓于A,B兩點(diǎn),P為線段AB的中點(diǎn),當(dāng)△PFO的面積最大時(shí),求直線l的方程.
分析:由橢圓C:
x2
4
+
y2
3
=1
可得c=
a2-b2
,左焦點(diǎn)F的坐標(biāo).由題意只考慮直線l的斜率存在且不為0即可.設(shè)直線l的方程為my=x+1,A(x1,y1),B(x2,y2),與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用中點(diǎn)坐標(biāo)公式可得yP,利用S△PFO=
1
2
|OF|•|yP|
和基本不等式即可得出.
解答:解:由橢圓C:
x2
4
+
y2
3
=1
可得a2=4,b2=3,∴c=
a2-b2
=1.
∴左焦點(diǎn)F(-1,0).
由題意只考慮直線l的斜率存在且不為0即可,
設(shè)直線l的方程為my=x+1,A(x1,y1),B(x2,y2),
聯(lián)立
my=x+1
x2
4
+
y2
3
=1
化為(4+3m2)y2-6my-9=0,
y1+y2=
6m
4+3m2
,
yP=
y1+y2
2
=
3m
4+3m2
,
∴S△PFO=
1
2
|OF|•|yP|
=
|3m|
2(4+3m2)
=
3
2(
4
|m|
+3|m|)
3
2×2
12
=
3
8
,當(dāng)且僅當(dāng)|m|=
2
3
3
時(shí)取等號(hào).
此時(shí)△PFO的最大值為
3
8
,直線l的方程為±
2
3
3
y=x+1
點(diǎn)評(píng):本題考查了直線與橢圓相交問(wèn)題、根與系數(shù)的關(guān)系、三角形的面積最大值問(wèn)題、基本不等式等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過(guò)橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長(zhǎng)度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x24
+y2=1
,直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由;
(2)求△AOB面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)一模)已知橢圓C:
x2
4
+
y2
3
=1
和點(diǎn)P(4,0),垂直于x軸的直線與橢圓C交于A,B兩點(diǎn),連結(jié)PB交橢圓C于另一點(diǎn)E.
(Ⅰ)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)證明直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知橢圓C:
x2
4
+y2=1
,直線l與橢圓C相交于A、B兩點(diǎn),
OA
OB
=0
(其中O為坐標(biāo)原點(diǎn)).
(1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由;
(2)求|OA|•|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,已知定點(diǎn)F1(-2,0)、F2(2,0),動(dòng)點(diǎn)N滿足|
ON
|=1(O為坐標(biāo)原點(diǎn)),
F1M
=2
NM
,
MP
MF2
(λ∈R),
F1M
PN
=0,求點(diǎn)P的軌跡方程.
精英家教網(wǎng)
(2)如圖2,已知橢圓C:
x2
4
+y2=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓上,且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N,
(。┰O(shè)直線AP、BP的斜率分別為k1、k2,求證:k1•k2為定值;
(ⅱ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案