【題目】設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).
【答案】(1) ; (2)是的極大值點(diǎn),是的極小值點(diǎn).
【解析】
(1)根據(jù)切點(diǎn)是曲線與切線的公共點(diǎn),可得,注意到直線y=8的斜率為0,結(jié)合導(dǎo)數(shù)的幾何意義可建立方程,聯(lián)合成方程組,求解即可。
(2)首先求導(dǎo)函數(shù)f′(x)=3(x2-a)(a≠0),可以看到a的取值直接影響到導(dǎo)函數(shù)的符號(hào),故需對(duì)a進(jìn)行分類討論,由于a≠0,所以分a<0和a>0兩種情況討論,得到單調(diào)區(qū)間,同時(shí)根據(jù)單調(diào)性判斷并求出極值。
(1)f′(x)=3x2-3a.
因?yàn)榍y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,
所以,即
解得a=4,b=24.
(2)f′(x)=3(x2-a)(a≠0).
當(dāng)a<0時(shí),f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,此時(shí)函數(shù)f(x)沒(méi)有極值點(diǎn).
當(dāng)a>0時(shí),由f′(x)=0得x=±.
當(dāng)x∈(-∞,-)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(-,)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增.
此時(shí)x=-是f(x)的極大值點(diǎn),x=是f(x)的極小值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題:
①“已知函數(shù)y=f(x),x∈ D,若D關(guān)于原點(diǎn)對(duì)稱,則函數(shù)y=f(x),x∈ D為奇函數(shù)”的逆命題;
②“對(duì)應(yīng)邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實(shí)根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)商場(chǎng)經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計(jì),每位顧客采用的分期付款次數(shù)的分布列為:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;采用2期或3期付款,其利潤(rùn)為250元;采用4期或5期付款,其利潤(rùn)為300元.表示經(jīng)銷一件該商品的利潤(rùn).
(1)求購(gòu)買該商品的3位顧客中,恰有2位采用1期付款的概率;
(2)求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形,,C.
(1)求證:直線直線;
(2)若直線與底面ABC成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù) 有兩個(gè)極值點(diǎn),,其中 ,,且,則方程 的實(shí)根個(gè)數(shù)為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
()求橢圓的方程.
()設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)為圓心的圓,滿足此圓與相交于兩點(diǎn), (兩點(diǎn)均不在坐標(biāo)軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a5=﹣3,S10=﹣40.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n , …項(xiàng),按原來(lái)的順序排成一個(gè)新數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左焦點(diǎn)為F,離心率為 .若經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com