【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動1次的有2人,2次的有4人,3次的有4人.現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.

(1)設為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;

(2)設為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學期望.

【答案】(1).(2)見解析.

【解析】試題分析:1)由已知得,即可得到事件的概率.

(2)由題意得,得到隨機變量的所有可能取值,求得隨機變量取每個值的概率,即可得到隨機變量的分布列,并計算其數(shù)學期望.

試題解析:

(1)由已知得.所以事件發(fā)生的概率為.

(2)隨機變量的所有可能取值為0,1,2

計算,

,

;

所以隨機變量的分布列為:

隨機變量的數(shù)學期望為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知、、是函數(shù)的三個極值點,且,有下列四個關于函數(shù)的結論:①;②;③;④恒成立,其中正確的序號為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學從參加高一年級上學期期末考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段[4050),[5060),,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題

(1)估計這次考試的及格率(60分及以上為及格).

(2)從成績是70分以上(包括70)的學生中選一人,求選到第一名學生的概率(第一名學生只一人).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:

(1)令,利用給出的參考數(shù)據(jù)求出關于的回歸方程.(精確到0.1)

參考數(shù)據(jù):,,

其中,

(2)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量不高于20微克時對人體無害,為了放心食用該蔬菜,請估計至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù)

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為橢圓的參數(shù)方程為在以坐標原點為極點, 軸正半軸為極軸建立的極坐標系中,點的坐標為.

(1)將點的坐標化為直角坐標系下的坐標,橢圓的參數(shù)方程化為普通方程;

(2)直線與橢圓交于, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,( 為常數(shù))

(1)若處的切線方程為為常數(shù)),求的值;

(2)設函數(shù)的導函數(shù)為,若存在唯一的實數(shù),使得同時成立,求實數(shù)的取值范圍;

(3)令,若函數(shù)存在極值,且所有極值之和大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“一帶一路”國際合作高峰論壇圓滿落幕了,相關話題在網(wǎng)絡上引起了網(wǎng)友們的高度關注,為此,21財經(jīng)APP聯(lián)合UC推出“一帶一路”大數(shù)據(jù)微報告,在全國抽取的70千萬網(wǎng)民中(其中為高學歷)有20千萬人對此關注(其中為高學歷).

(1)根據(jù)以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表;

(2)根據(jù)列聯(lián)表,用獨立性檢驗的方法分析,能否有的把握認為“一帶一路”的關注度與學歷有關系?

高學歷(千萬人)

不是高學歷(千萬人)

合計

關注

不關注

合計

參考公式: 統(tǒng)計量的表達式是,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月16日摩拜單車進駐大連市旅順口區(qū),綠色出行引領時尚,旅順口區(qū)對市民進行“經(jīng)常使用共享單車與年齡關系”的調查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.

(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:

年輕人

非年輕人

合計

經(jīng)常使用單車用戶

不常使用單車用戶

合計

(2)請根據(jù)(1)中的列聯(lián)表,計算值并判斷能否有的把握認為經(jīng)常使用共享單車與年齡有關?

(附:

時,有的把握說事件有關;當時,有的把握說事件有關;當時,認為事件是無關的)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

(1)當時,求曲線在點處的切線方程;

(2)討論函數(shù)的單調性;

(3)當,且時證明不等式:

查看答案和解析>>

同步練習冊答案