【題目】4月16日摩拜單車進駐大連市旅順口區(qū),綠色出行引領時尚,旅順口區(qū)對市民進行“經常使用共享單車與年齡關系”的調查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內使用的次數(shù)為6次或6次以上的稱為“經常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.
(1)請你根據已知的數(shù)據,填寫下列列聯(lián)表:
年輕人 | 非年輕人 | 合計 | |
經常使用單車用戶 | |||
不常使用單車用戶 | |||
合計 |
(2)請根據(1)中的列聯(lián)表,計算值并判斷能否有的把握認為經常使用共享單車與年齡有關?
(附:
當時,有的把握說事件與有關;當時,有的把握說事件與有關;當時,認為事件與是無關的)
【答案】(1)見解析;(2)沒有的把握認為經常使用共享單車與年齡有關.
【解析】試題分析:(1)根據對200進行調查統(tǒng)計可得:經常使用單車的120名用戶中包括年輕人100人,非年輕人20人;而不經常使用單車的80名用戶中包括年輕人60人,非年輕人20人,得到列聯(lián)表;(2)根據觀測值的計算公式代入數(shù)據做出觀測值,把所得的觀測值同臨界值進行比較,得到沒有的把握認為經常使用共享單車與年齡有關.
試題解析:(1)補全的列聯(lián)表如下:
年輕人 | 非年輕人 | 合計 | |
經常使用單車用戶 | 100 | 20 | 120 |
不常使用單車用戶 | 60 | 20 | 80 |
合計 | 160 | 40 | 200 |
(2)于是.
∴,
沒有的把握認為經常使用共享單車與年齡有關.
科目:高中數(shù)學 來源: 題型:
【題目】如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:
(1)取到紅色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動1次的有2人,2次的有4人,3次的有4人.現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(1)設為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;
(2)設為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的單調區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)在(II)的條件下,對任意的,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,
(1)當P在圓上運動時,求點M的軌跡C的方程;
(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),( ).
(Ⅰ)若有最值,求實數(shù)的取值范圍;
(Ⅱ)當時,若存在、(),使得曲線在與處的切線互相平行,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形, , ,以的中點為原點,建立如圖所示的平面直角坐標系.
(1)求以為焦點,且過兩點的橢圓的標準方程;
(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(A)在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程為 (為參數(shù)), 是曲線上的動點, 為線段的中點,設點的軌跡為曲線.
(1)求的坐標方程;
(2)若射線與曲線異于極點的交點為,與曲線異于極點的交點為,求.
(B)設函數(shù).
(1)當時,求不等式的解集;
(2)對任意, 不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com