已知圓與圓,以圓的圓心分別為左右焦點的橢圓經過兩圓的交點.

(1)求橢圓的方程;

(2)直線上有兩點在第一象限)滿足,直線交于點,當最小時,求線段的長.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆陜西省寶雞市高三教學質量檢測(一)數(shù)學(理)試卷(解析版) 題型:解答題

選修4-4:坐標系與參數(shù)方程

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.

(1)求的直角坐標方程;

(2)直線為參數(shù))與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河南省洛陽市高三第二次統(tǒng)一考試(3月)數(shù)學(理)試卷(解析版) 題型:選擇題

已知等差數(shù)列的公差和首項都不等于,且,,成等比數(shù)列,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北省高三下學期二調考試數(shù)學(理)試卷(解析版) 題型:選擇題

如圖,三個邊長為2的等邊三角形有一條邊在同一直線上,邊上有10個不同的點,記,則的值為( )

A. B. 45 C. D. 180

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北省高三下學期二調考試數(shù)學(理)試卷(解析版) 題型:選擇題

已知復數(shù)為虛數(shù)單位),則的共軛復數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆貴州省貴陽市高三2月適應性考試(一)數(shù)學文試卷(解析版) 題型:填空題

我國古代數(shù)學家劉徽是公元三世紀世界上最杰出的數(shù)學家,他在《九章算術圓田術》注中,用割圓術證明了圓面積的精確公式,并給出了計算圓周率的科學方法.所謂“割圓術”,即通過圓內接正多邊形細割圓,并使正多邊形的周長無限接近圓的周長,進而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計算圓周率是從正六邊形開始的,易知圓的內接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑

,此時圓內接正六邊形的周長為

,此時若將圓內接正六邊形的周長等同于圓的周長,可得圓周率為3,當用正二十四邊形內接于圓時,按照上述算法,可得圓周率為__________.(參考數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆貴州省貴陽市高三2月適應性考試(一)數(shù)學文試卷(解析版) 題型:選擇題

為邊長為4的正方形

的邊

的中點,

為正方形區(qū)域內任意一點(含邊界),則

的最大值為 ( )

A. 32 B. 24 C. 20 D. 16

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東省揭陽市高二下學期第一次階段考試數(shù)學(文)試卷(解析版) 題型:填空題

下列命題:

① 命題“若,則” 的逆否命題為:“若,則

② “” 是 “”的充分不必要條件

③若為假命題,則均為假命題

④對于命題,使得,則,均有,說法錯誤的是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東省高二上學期期末考試數(shù)學(理)試卷(解析版) 題型:解答題

己知函數(shù)的最小正周期為 ,直線 為它的圖象的一條對稱軸.

(1)當時,求函數(shù) 的值域;

(2)在 分別為角 的對應邊,若,求的最大值.

查看答案和解析>>

同步練習冊答案