18.設(shè)角α、β是銳角,若(1+tanα)(1+tanβ)=2,則α+β=$\frac{π}{4}$.

分析 首先,根據(jù)條件(1+tanα)(1+tanβ)=2,化簡(jiǎn),得到tan(α+β)=1,然后,結(jié)合α,β都是銳角,從而確定α+β的值.

解答 解:∵(1+tanα)(1+tanβ)=2,
∴1+tanα+tanβ+tanαtanβ=2,
∴tan(α+β)(1-tanαtanβ)+tanαtanβ=1
∴tan(α+β)=1,
∵α,β都是銳角,
∴0<α+β<π,
∴α+β=$\frac{π}{4}$,
故答案為:$\frac{π}{4}$.

點(diǎn)評(píng) 本題重點(diǎn)考查了兩角和的正切公式及其靈活運(yùn)用,屬于中檔題.解題關(guān)鍵是正確利用兩角和的正切公式進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>2)=p,則P(-2<ξ<0)( 。
A.$\frac{1}{2}$+PB.1-PC.$\frac{1}{2}$-PD.1-2P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等差數(shù)列{an}中,若an+an+2=4n+6(n∈N*),則該數(shù)列的通項(xiàng)公式an=2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,$sinA=\frac{{\sqrt{7}}}{4}$,a=2,sinC=2sinB,則b=$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知圓O的方程是x2+y2-8x-2y+10=0,過(guò)點(diǎn)M(3,0)的最短弦所在的直線方程是x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)y=xsinx+cosx的圖象上的點(diǎn)(x0,y0)處的切線的斜率為k,若k=g(x0),則函數(shù)k=g(x0)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(0,0,2),(2,2,0),(1,2,1),(2,2,2),畫(huà)該四面體三視圖中的正視圖時(shí),以平面zOy為投影面,則得到正視圖可以為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),若向量($\overrightarrow{a}$+$\overrightarrow$)⊥(λ$\overrightarrow{a}$-$\overrightarrow$),則實(shí)數(shù)λ的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x+a•e-x
(Ⅰ)當(dāng)a=e2時(shí),求f(x)在區(qū)間[1,3]上的最小值;
(Ⅱ)求證:存在實(shí)數(shù)x0∈[-3,3],有f(x0)>a.

查看答案和解析>>

同步練習(xí)冊(cè)答案