分析 先求出圓心到直線的距離既得弦心距,求出圓的半徑,利用勾股定理求出弦長的一半,即可求得弦長
解答 解:x2+y2-4x-4y-1=0可變?yōu)椋▁-2)2+(y-2)2=9,故圓心坐標(biāo)為(2,2),半徑為3.
圓心到直線x-y+2=0的距離是$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
故弦長的一半是$\sqrt{9-2}$=$\sqrt{7}$
所以弦長為$2\sqrt{7}$.
故答案為:$2\sqrt{7}$.
點評 本題考查直線與圓相交的性質(zhì),解題的關(guān)鍵是了解直線與圓相交的性質(zhì),半徑,弦心距,弦長的一半構(gòu)成一個直角三角形,掌握點到直線的公式,會用它求點直線的距離.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n>2 | B. | n>3 | C. | n>4 | D. | n>5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $2\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞) | C. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | (-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com