3.要得到函數(shù) f(x)=sin(3x+$\frac{π}{3}$)的導(dǎo)函數(shù)f′(x)的圖象,只需將f(x)的圖象( 。
A.向右平移$\frac{π}{3}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍( 橫坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的3倍( 橫坐標(biāo)不變)
C.向左平移$\frac{π}{3}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的 3倍( 橫坐標(biāo)不變)
D.向左平移$\frac{π}{6}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的 3倍( 橫坐標(biāo)不變)

分析 求導(dǎo),根據(jù)同角的正弦函數(shù)圖象向左平移四分之一個(gè)周期可得同角的余弦函數(shù)圖象,結(jié)合縱向伸縮變換的法則,可得答案.

解答 解:∵函數(shù) f(x)=sin(3x+$\frac{π}{3}$),
∴f′(x)=3cos(3x+$\frac{π}{3}$),
要得到函數(shù)f′(x)的圖象,只需將f(x)的圖象:
向左平移$\frac{π}{6}$個(gè)單位得到y(tǒng)=cos(3x+$\frac{π}{3}$)的圖象,
再保持 橫坐標(biāo)不變把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的 3倍,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是導(dǎo)數(shù)的運(yùn)算,函數(shù)圖象的平移變換和伸縮變換,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列命題中,是假命題的是( 。
A.?x>0,x>lnxB.?x0∈R,tanx0=2016
C.?x0∈R,sinx0+cosx0=$\sqrt{3}$D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=-x2+4|x|+5.
(1)畫出函數(shù)y=f(x)在閉區(qū)間[-5,5]上的大致圖象;
(2)若直線y=a與y=f(x)的圖象有2個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線 $\frac{x^2}{4}-\frac{y^2}{16}=1$的一條漸近線方程為( 。
A.y=2xB.$y=\frac{1}{2}x$C.y=4xD.$y=\frac{1}{4}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)k∈R,動(dòng)直線l1:kx-y+k=0過(guò)定點(diǎn)A,動(dòng)直線l2:x+ky-5-8k=0過(guò)定點(diǎn)B,并且l1與l2相交于點(diǎn)P,則|PA|+|PB|的最大值為( 。
A.$10\sqrt{2}$B.$5\sqrt{2}$C.$10\sqrt{5}$D.$5\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于數(shù)列{xn},若對(duì)任意n∈N+,都有$\frac{{x}_{n}+{x}_{n+2}}{2}<{x}_{n+1}$成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)b${\;}_{n}=2t-\frac{t{n}^{2}-n}{{2}^{n-1}}$,若數(shù)列b${\;}_{5},_{6},_{7},…,_{n}(n≥5,n∈{N}^{+})$是“減差數(shù)列”,則實(shí)數(shù)t的取值范圍是($\frac{3}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=3$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,則$\overrightarrow{AC}$•$\overrightarrow{AD}$的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知在△ABC中,a,b,c分別是∠BAC,∠ABC,∠ACB的對(duì)邊,若過(guò)點(diǎn)C作垂直于AB的垂線CD,且CD=h,則下列給出的關(guān)于a,b,c,h的不等式中正確的是(  )
A.a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$B.a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$C.a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$D.a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案