【題目】如圖,A,B,C是橢圓M:上的三點(diǎn),其中點(diǎn)A是橢圓的右頂點(diǎn),BC過(guò)橢圓M的中心,且滿足ACBC,BC=2AC。

(1)求橢圓的離心率;

(2)若y軸被ABC的外接圓所截得弦長(zhǎng)為9,求橢圓方程。

【答案】(1)(2)

【解析】

試題分析:(1)有條件列出C點(diǎn)坐標(biāo)是解題關(guān)鍵:因?yàn)?/span>過(guò)橢圓的中心,所以,又,所以是以角為直角的等腰直角三角形,則所以,則,(2)本題關(guān)鍵為表示出ABC的外接圓方程:的外接圓直徑為AB,所以易得的外接圓為:,由垂徑定理得,所以橢圓方程為

試題解析:(1)因?yàn)?/span>過(guò)橢圓的中心,所以,

,所以是以角為直角的等腰直角三角形, 3

,所以,則,

所以; 7

(2)的外接圓圓心為中點(diǎn),半徑為

的外接圓為: 10

,,所以,得,

(也可以由垂徑定理得

所以所求的橢圓方程為 15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為m),三塊種植植物的矩形區(qū)域的總面積為m2).

1)求關(guān)于的函數(shù)關(guān)系式;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F(xiàn)分別在A1B1 , D1C1上,A1E=D1F=4,過(guò)點(diǎn)E,F(xiàn)的平面α與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形.
(I)在圖中畫(huà)出這個(gè)正方形(不必說(shuō)明畫(huà)法和理由);
(II)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的大于1的正整數(shù)n,設(shè),其中,且記滿足條件的所有x的和為

(1)求(2)設(shè),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)+1(0≤φ≤ )的圖象相鄰兩對(duì)稱軸之間的距離為π,且在x= 時(shí)取得最大值2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)f(α)= ,且 <α< ,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:

收入x (萬(wàn)元)

8.2

8.6

10.0

11.3

11.9

支出y (萬(wàn)元)

6.2

7.5

8.0

8.5

9.8

據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶收入為15萬(wàn)元家庭年支出為(
A.11.4萬(wàn)元
B.11.8萬(wàn)元
C.12.0萬(wàn)元
D.12.2萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{}中, ,且對(duì)任意正整數(shù)都成立,數(shù)列{}的前n項(xiàng)和為Sn。

1)若,且,求a

2)是否存在實(shí)數(shù)k,使數(shù)列{}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請(qǐng)說(shuō)明理由;

3)若。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,曲線f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與 的大;
(3)證明:x>0時(shí),xexlnx+ex>x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案