【題目】已知函數(shù), .

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若,求的取值范圍.

【答案】(1)單調(diào)減區(qū)間是,單調(diào)增區(qū)間是.(2) .

【解析】試題分析:

(1)當(dāng)時(shí), , ,結(jié)合導(dǎo)函數(shù)與原函數(shù)之間的關(guān)系可得的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是.

(2)分類討論:

①當(dāng)時(shí),符合題意;

②當(dāng)時(shí), ,由題意可得存在,使得,即,據(jù)此可得a.

據(jù)此可得,實(shí)數(shù)的取值范圍

試題解析:

(1)由題意得,當(dāng)時(shí),

∴當(dāng)時(shí), ,當(dāng)時(shí), ,

的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是.

(2)①當(dāng)時(shí), ,顯然符合題意;

②當(dāng)時(shí), ,令, 恒成立.

∴該方程有兩個(gè)不同實(shí)根,且一正一負(fù),即存在,使得,即,∴當(dāng)時(shí), ,當(dāng)時(shí),

,

,∴,即,

由于上是增函數(shù),∴.

由于,設(shè),則.

∴函數(shù)上單調(diào)遞減,∴.

綜上所述,實(shí)數(shù)的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m個(gè)正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某智能手機(jī)制作完成之后還需要依次通過(guò)三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過(guò)的概率分別為,,每道程序是相互獨(dú)立的,且一旦審核不通過(guò)就停止審核,每部手機(jī)只有三道程序都通過(guò)才能出廠銷售.

(1)求審核過(guò)程中只通過(guò)兩道程序的概率;

(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下面各題
(1)求過(guò)點(diǎn)A(2,3),且垂直于直線3x+2y﹣1=0的直線方程;
(2)已知直線l過(guò)原點(diǎn),且點(diǎn)M(5,0)到直線l的距離為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)創(chuàng)“市級(jí)示范性學(xué)!钡募、乙兩所學(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問(wèn)了20為市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

檢查組將成績(jī)分成了四個(gè)等級(jí):成績(jī)?cè)趨^(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間等.

(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過(guò)觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿意度進(jìn)行比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;

(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求乙校得分的等級(jí)高于甲校得分的等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線)與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,

1)求動(dòng)圓的圓心的軌跡的方程;

2)若過(guò)原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問(wèn)是否存在以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò), 兩點(diǎn),且圓心在直線.

1)求圓的方程;

2)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案