【題目】已知某商品在過去20天的日銷售量和日銷售價格均為銷售時間t(天)的函數(shù),日銷售量(單位:件)近似地滿足: ,日銷售價格(單位:元)近似地滿
足:
(I)寫出該商品的日銷售額S關于時間t的函數(shù)關系;
(Ⅱ)當t等于多少時,日銷售額S最大?并求出最大值
【答案】(I)見解析;(II)當t=5時,日銷售額S最大,最大值為1250元.
【解析】試題分析:(1)通過S=f (t)·g(t)求出函數(shù)的解析式.
(2)利用函數(shù)的解析式,通過求1≤t≤10和11≤t≤20兩段上函數(shù)的最大值.從而得函數(shù)的最大值.
試題解析:(I)由題意知,S=f (t)·g(t)=
(II)當1≤t≤10,tN*時,S=(2t+40)(-t+30)=-2 t2+20t+1200=-2 (t-5)2+1250.
因此,當t=5時,S最大值為1250;
當11≤t≤20,tN*時,S=15(-t+30)=-15t+450為減函數(shù),
因此,當t=11時,S最大值為285.
綜上,當t=5時,日銷售額S最大,最大值為1250元.
科目:高中數(shù)學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且 =λ(0<λ<1).
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當λ為何值時,平面BEF⊥平面ACD?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利民中學為了了解該校高一年級學生的數(shù)學成績,從高一年級期中考試成績中抽出100名學生的成績,由成績得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問題:
(1)求這100名學生成績的及格率;(大于等于60分為及格)
(2)試比較這100名學生的平均成績和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知線段的端點的坐標是,端點在圓上運動.
(Ⅰ)求線段的中點的軌跡的方程;
(Ⅱ)設圓與曲線的兩交點為,求線段的長;
(Ⅲ)若點在曲線上運動,點在軸上運動,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y=ax2(a>0)的焦點到準線的距離為 ,且C上的兩點A(x1 , y1),B(x2 , y2)關于直線y=x+m對稱,并且 ,那么m= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的圓心在直線3x﹣y=0上且在第一象限,圓C與x相切,且被直線x﹣y=0截得的弦長為2 .
(1)求圓C的方程;
(2)若P(x,y)是圓C上的點,滿足 x+y﹣m≤0恒成立,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最小正周期為π,它的一個對稱中心為(,0)
(1)求函數(shù)y=f(x)圖象的對稱軸方程;
(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com