【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,FE∥CD,交PD于點E.
(1)證明:CF⊥平面ADF;
(2)求二面角DAFE的余弦值.
【答案】(1)見解析(2)
【解析】
(1)結(jié)合已知又直線和平面垂直的判定定理可判F,即得所求;
(2)由已知數(shù)據(jù)求出必要的線段的長度,建立空間直角坐標(biāo)系,由向量法計算即可.
(1)證明:∵PD⊥平面ABCD,AD平面ABCD,
∴PD⊥AD.
又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD.
又PC平面PCD,∴AD⊥PC.
又AF⊥PC,AD∩AF=A,∴PC⊥平面ADF,即CF⊥平面ADF.
(2)設(shè)AB=1,則在Rt△PCD中,CD=1,
又∠DPC=30°,∴PC=2,PD=,∠PCD=60°.
由(1)知CF⊥DF,∴DF=CDsin 60°=,CF=CDcos 60°=.
又FE∥CD,∴==,∴DE=.
同理EF=CD=.
如圖所示,以D為原點,建立空間直角坐標(biāo)系Dxyz,
則A(0,0,1),E,F,P(,0,0),C(0,1,0).
設(shè)m=(x,y,z)是平面AEF的一個法向量,則
又=,=,∴
令x=4,則z=,m=(4,0,).由(1)知平面ADF的一個法向量為=(-,1,0),
設(shè)二面角 DAFE的平面角為θ,可知θ為銳角,
故cos θ=|cos〈m,〉|===.
故二面角DAFE的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①“且為真”是“或為真”的充分不必要條件:②“且為假”是“或為真”的充分不必要條件;③“或為真”是“非為假”的必要不充分條件;④“非為真”是“且為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“干支紀(jì)年法”是中國歷法上自古以來使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復(fù)始,無窮無盡。2019年是“干支紀(jì)年法”中的己亥年,那么2026年是“干支紀(jì)年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,的坐標(biāo)分別為,.直線,相交于點,且它們的斜率之積是.記點的軌跡為.
(Ⅰ)求的方程.
(Ⅱ)已知直線,分別交直線于點,,軌跡在點處的切線與線段交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長均相等,是棱上的點(不含端點),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com