【題目】在學(xué)習(xí)強國活動中,某市圖書館的科技類圖書和時政類圖書是市民借閱的熱門圖書.為了豐富圖書資源,現(xiàn)對已借閱了科技類圖書的市民(以下簡稱為“問卷市民”)進行隨機問卷調(diào)查,若不借閱時政類圖書記1分,若借閱時政類圖書記2分,每位市民選擇是否借閱時政類圖書的概率均為,市民之間選擇意愿相互獨立.

1)從問卷市民中隨機抽取4人,記總得分為隨機變量,求的分布列和數(shù)學(xué)期望;

2)(i)若從問卷市民中隨機抽取人,記總分恰為分的概率為,求數(shù)列的前10項和;

(ⅱ)在對所有問卷市民進行隨機問卷調(diào)查過程中,記已調(diào)查過的累計得分恰為分的概率為(比如:表示累計得分為1分的概率,表示累計得分為2分的概率,),試探求之間的關(guān)系,并求數(shù)列的通項公式.

【答案】1)分布列見解析,6;(2)(i;(ⅱ),.

【解析】

1)獨立重復(fù)試驗,列出隨機變量可能取值為4,56,7,8,再求出各可能值的概率可解得.

2)(i)總分恰為分的概率是等比數(shù)列,用基本量計算.

2)(ⅱ)遞推數(shù)列化為等比數(shù)列求解.

1的可能取值為45,6,7,8,

,

所有的分布列為

4

5

6

7

8

所以數(shù)學(xué)期望.

2)(i)總分恰為分的概率為,

所以數(shù)列是首項為,公比為的等比數(shù)列,

10項和.

ii)已調(diào)查過的累計得分恰為分的概率為,得不到分的情況只有先得分,再得2分,概率為.

因為,即,

所以,

是首項為,公比為的等比數(shù)列,

所以,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某兩名高三學(xué)生連續(xù)9次數(shù)學(xué)測試的成績(單位:分)進行統(tǒng)計得到如下折線圖.下列有關(guān)這兩名學(xué)生數(shù)學(xué)成績的分析中,正確的結(jié)論是(

A.甲同學(xué)的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?/span>130

B.根據(jù)甲同學(xué)成績折線圖中的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間內(nèi)

C.乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān)

D.乙同學(xué)在這連續(xù)九次測驗中的最高分與最低分的差超過40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:指數(shù)函數(shù)R上是單調(diào)減函數(shù);命題q:關(guān)于x的方程有實根,

1)若p為真,求a的范圍

2)若q為真,求的范圍

3)若pq為真,pq為假,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照下列要求,分別求有多少種不同的方法?

15個不同的小球放入3個不同的盒子;

25個不同的小球放入3個不同的盒子,每個盒子至少一個小球;

35個相同的小球放入3個不同的盒子,每個盒子至少一個小球;

45個不同的小球放入3個不同的盒子,恰有1個空盒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的圖象在處的切線方程;

2)討論函數(shù)的單調(diào)性;

3)當(dāng)時,若方程有兩個不相等的實數(shù)根,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時,證明:;

(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上單調(diào)遞增,求實數(shù)的取值范圍;

2)設(shè),若,恒有成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點為,左、右頂點分別為、,上、下頂點分別為、,連結(jié)并延長交橢圓于點,連結(jié),,記橢圓的離心率為.

1)若,.

①求橢圓的標(biāo)準(zhǔn)方程;

②求的面積之比.

2)若直線和直線的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋內(nèi)有個不同的紅球,個不同的白球,

(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記分,取一個白球記分,從中任取個球,使總分不少于分的取法有多少種?

查看答案和解析>>

同步練習(xí)冊答案