【題目】按照下列要求,分別求有多少種不同的方法?

15個(gè)不同的小球放入3個(gè)不同的盒子;

25個(gè)不同的小球放入3個(gè)不同的盒子,每個(gè)盒子至少一個(gè)小球;

35個(gè)相同的小球放入3個(gè)不同的盒子,每個(gè)盒子至少一個(gè)小球;

45個(gè)不同的小球放入3個(gè)不同的盒子,恰有1個(gè)空盒.

【答案】1243種(2150種(36種(490

【解析】

1)利用分步乘法計(jì)數(shù)原理可求;

2)先把5個(gè)小球分為三組,然后再放入三個(gè)盒中可得;

3)利用隔板法進(jìn)行求解,5個(gè)相同的小球,分成3組共有種方法;

4)先把5個(gè)小球分為兩組,然后再放入三個(gè)盒中可得.

15個(gè)不同的小球放入3個(gè)不同的盒子,每個(gè)小球都有3種可能,利用乘法原理可得不同的方法有;

25個(gè)不同的小球放入3個(gè)不同的盒子,每個(gè)盒子至少一個(gè)小球,先把5個(gè)小球分組,有兩種分法:22、13、1、1;再放入3個(gè)不同的盒子,故不同的方法共有

35個(gè)相同的小球放入3個(gè)不同的盒子,每個(gè)盒子至少一個(gè)小球,類(lèi)似于在5個(gè)小球間的空隙中,放入2個(gè)隔板,把小球分為3組,故不同的方法共有;

45個(gè)不同的小球放入3個(gè)不同的盒子,恰有一個(gè)空盒,先把5個(gè)小球分2組,有兩種分法:3、2、0;41、0;再放入3個(gè)不同的盒子,故不同的方法共有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市移動(dòng)公司為了提高服務(wù)質(zhì)量,決定對(duì)使用A,B兩種套餐的集團(tuán)用戶(hù)進(jìn)行調(diào)查,準(zhǔn)備從本市個(gè)人數(shù)超過(guò)1000人的大集團(tuán)和8個(gè)人數(shù)低于200人的小集團(tuán)中隨機(jī)抽取若干個(gè)集團(tuán)進(jìn)行調(diào)查,若一次抽取2個(gè)集團(tuán),全是小集團(tuán)的概率為

求n的值;

若取出的2個(gè)集團(tuán)是同一類(lèi)集團(tuán),求全為大集團(tuán)的概率;

若一次抽取4個(gè)集團(tuán),假設(shè)取出小集團(tuán)的個(gè)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足,其中是數(shù)列的前項(xiàng)和.

1)若數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若,,求數(shù)列的通項(xiàng)公式;

3)在(2)的條件下,設(shè),求證:數(shù)列中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)為參數(shù)),曲線(xiàn)為參數(shù)).

(1)設(shè)相交于兩點(diǎn),求;

(2)若把曲線(xiàn)上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線(xiàn),設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)的距離的最大時(shí),點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,分別是的中點(diǎn).

1)證明:平面平面;

2)已知點(diǎn)在棱上且,求直線(xiàn)與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)強(qiáng)國(guó)活動(dòng)中,某市圖書(shū)館的科技類(lèi)圖書(shū)和時(shí)政類(lèi)圖書(shū)是市民借閱的熱門(mén)圖書(shū).為了豐富圖書(shū)資源,現(xiàn)對(duì)已借閱了科技類(lèi)圖書(shū)的市民(以下簡(jiǎn)稱(chēng)為“問(wèn)卷市民”)進(jìn)行隨機(jī)問(wèn)卷調(diào)查,若不借閱時(shí)政類(lèi)圖書(shū)記1分,若借閱時(shí)政類(lèi)圖書(shū)記2分,每位市民選擇是否借閱時(shí)政類(lèi)圖書(shū)的概率均為,市民之間選擇意愿相互獨(dú)立.

1)從問(wèn)卷市民中隨機(jī)抽取4人,記總得分為隨機(jī)變量,求的分布列和數(shù)學(xué)期望;

2)(i)若從問(wèn)卷市民中隨機(jī)抽取人,記總分恰為分的概率為,求數(shù)列的前10項(xiàng)和;

(ⅱ)在對(duì)所有問(wèn)卷市民進(jìn)行隨機(jī)問(wèn)卷調(diào)查過(guò)程中,記已調(diào)查過(guò)的累計(jì)得分恰為分的概率為(比如:表示累計(jì)得分為1分的概率,表示累計(jì)得分為2分的概率,),試探求之間的關(guān)系,并求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的日是全國(guó)愛(ài)牙日,為了迎接這一節(jié)日,某地區(qū)衛(wèi)生部門(mén)成立了調(diào)查小組,調(diào)查“常吃零食與患齲齒的關(guān)系”,對(duì)該地區(qū)小學(xué)六年級(jí)名學(xué)生進(jìn)行檢查,按患齲齒的不患齲齒分類(lèi),得匯總數(shù)據(jù):不常吃零食且不患齲齒的學(xué)生有名,常吃零食但不患齲齒的學(xué)生有名,不常吃零食但患齲齒的學(xué)生有名.

1)完成答卷中的列聯(lián)表,問(wèn):能否在犯錯(cuò)率不超過(guò)的前提下,認(rèn)為該地區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系?

2名區(qū)衛(wèi)生部門(mén)的工作人員隨機(jī)分成兩組,每組人,一組負(fù)責(zé)數(shù)據(jù)收集,另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷上的單調(diào)性并加以證明;

2)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案