【題目】如今,中國的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用 (單位:萬元)和利潤 (單位:十萬元)之間的關(guān)系,得到下列數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
請(qǐng)回答:
(Ⅰ)請(qǐng)用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明與之間具有線性相關(guān)關(guān)系);
(Ⅱ)根據(jù)1的判斷結(jié)果,建立與之間的回歸方程,并預(yù)測當(dāng)時(shí),對(duì)應(yīng)的利潤為多少(精確到).
附參考公式:回歸方程中中和最小二乘估計(jì)分別為,,
相關(guān)系數(shù).
參考數(shù)據(jù): .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子里裝有大小質(zhì)量完全相同且分別標(biāo)有數(shù)字1、2、3、4的四個(gè)小球,從盒子里隨機(jī)摸出兩個(gè)小球,那么事件“摸出的小球上標(biāo)有的數(shù)字之和大于數(shù)字之積”的概率是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)則關(guān)于的方程的實(shí)數(shù)解最多有
A. 4個(gè) B. 7個(gè) C. 10個(gè) D. 12個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,在拋物線上,的重心與此拋物線的焦點(diǎn)重合(如圖)
(I)寫出該拋物線的方程和焦點(diǎn)的坐標(biāo);
(II)求線段中點(diǎn)的坐標(biāo);
(III)求弦所在直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(。┣骯的取值范圍;
(ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x∈(﹣∞,0)時(shí),xf′(x)<f(﹣x)(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a= f( ),b=(lg3)f(lg3),c=(log2 )f(log2 ),則( )
A.c>a>b
B.c>b>a
C.a>b>c
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣ ﹣ax(a∈R).
(1)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[﹣1,1]上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}(n∈N*)是公差不為0的等差數(shù)列,a1=1,且 , , 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 求證:Tn<1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com