【題目】盒子里裝有大小質(zhì)量完全相同且分別標有數(shù)字1、2、3、4的四個小球,從盒子里隨機摸出兩個小球,那么事件“摸出的小球上標有的數(shù)字之和大于數(shù)字之積”的概率是______.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,P是△ABC所在平面外的一點,點A′,B′,C′分別是△PBC,△PCA,△PAB的重心.
(1)求證:平面ABC∥平面A′B′C′;
(2)求△A′B′C′與△ABC的面積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐中,底面ABCD是平行四邊形,平面ABCD,垂足為G,G在AD上,且,,,,E是BC的中點.
求異面直線GE與PC所成的角的余弦值;
求點D到平面PBG的距離;
若F點是棱PC上一點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函數(shù)f(x)=1﹣ .
(1)若x∈[0, ],求函數(shù)f(x)的值域;
(2)當x∈[0,π]時,求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程是ρ=2,矩形ABCD內(nèi)接于曲線C1 , A,B兩點的極坐標分別為(2, )和(2, ),將曲線C1上所有點的橫坐標不變,縱坐標縮短為原來的一半,得到曲線C2 .
(1)寫出C,D的直角坐標及曲線C2的參數(shù)方程;
(2)設M為C2上任意一點,求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點O,焦點在x軸上,離心率為 ,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標準方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足|2 + |=|2 ﹣ |,求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費用 (單位:萬元)和利潤 (單位:十萬元)之間的關系,得到下列數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
請回答:
(Ⅰ)請用相關系數(shù)說明與之間是否存在線性相關關系(當時,說明與之間具有線性相關關系);
(Ⅱ)根據(jù)1的判斷結果,建立與之間的回歸方程,并預測當時,對應的利潤為多少(精確到).
附參考公式:回歸方程中中和最小二乘估計分別為,,
相關系數(shù).
參考數(shù)據(jù): .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com