【題目】如圖,在空間四邊形中,, ,,,且平面平面.

(1)求證:;

(2)若直線與平面所成角的余弦值為,求.

【答案】(1)見解析;(2)

【解析】分析:(1)由平面平面,利用面面垂直的性質(zhì)定理可得平面,從而得證;

(2)過點(diǎn)在平面內(nèi)作為坐標(biāo)原點(diǎn),分別以、的方向?yàn)?/span>軸、軸、軸的正方向建立空間直角坐標(biāo)系,求得平面的法向量,直線與平面所成角為利用即可得解.

詳解:

(1)證明:∵平面平面,平面平面

平面,,

平面,又∵平面,∴.

(2)解:過點(diǎn)在平面內(nèi)作,

由(Ⅰ)知平面,平面,平面

,

為坐標(biāo)原點(diǎn),分別以、的方向?yàn)?/span>軸、軸、軸的正方向建立空間直角坐標(biāo)系,則,,

由此,,設(shè)

,.

設(shè)平面的法向量

,得

設(shè)直線與平面所成角為,

∵直線與平面所成角的余弦值為,即

=

解得,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是合情推理的是(  )

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);

②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是

③由,滿足,推出是奇函數(shù);

④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

A. ①②④B. ①③④C. ②④D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

x

-4

-3

-2

-1

0

1

5

0

-3

-4

-3

m

1m= ;

2)在圖中畫出這個(gè)二次函數(shù)的圖象;

3)當(dāng)時(shí),x的取值范圍是 ;

4)當(dāng)時(shí),y的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機(jī)抽取了七位醫(yī)護(hù)人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核: 分制),用相關(guān)的特征量表示;醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)(試卷考試: 分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

特征量

1

2

3

4

5

6

7

98

88

96

91

90

92

96

9.9

8.6

9.5

9.0

9.1

9.2

9.8

(1)求關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到);

(2)利用(1)中的線性回歸方程,分析醫(yī)護(hù)專業(yè)考核分?jǐn)?shù)的變化對關(guān)愛患者考核分?jǐn)?shù)的影響,并估計(jì)某醫(yī)護(hù)人員的醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)為分時(shí),他的關(guān)愛患者考核分?jǐn)?shù)(精確到);

(3)現(xiàn)要從醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)分以下的醫(yī)護(hù)人員中選派人參加組建的“九寨溝災(zāi)后醫(yī)護(hù)小分隊(duì)”培訓(xùn),求這兩人中至少有一人考核分?jǐn)?shù)在分以下的概率.

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為矩形, ,的中點(diǎn),沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個(gè)命題:

平面,且的長度為定值;

三棱錐的最大體積為;

③在翻折過程中,存在某個(gè)位置,使得.

其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為:

(1)直線過點(diǎn),且與圓交于兩點(diǎn),若,求直線的方程;

(2)圓上有一動點(diǎn),,若向量,求動點(diǎn)的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地發(fā)生地質(zhì)災(zāi)害,使當(dāng)?shù)氐淖詠硭艿搅宋廴,某部門對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足,其中,當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時(shí)稱為最佳凈化.

(1)如果投放的藥劑質(zhì)量為m=4,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?

(2)如果投放的藥劑質(zhì)量為m,為了使在7天(從投放藥劑算起包括7天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為,三月底測得鳳眼蓮覆蓋面積為,鳳眼蓮覆蓋面積 (單位:)與月份(單位:月)的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

1)試判斷哪個(gè)函數(shù)模型更合適并求出該模型的解析式;

2)求鳳眼蓮覆蓋面積是元旦放入面積倍以上的最小月份.

(參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,且函數(shù))當(dāng)且僅當(dāng)在處取得極值,其中的導(dǎo)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案