【題目】已知圓的方程為:.
(1)直線過點(diǎn),且與圓交于兩點(diǎn),若,求直線的方程;
(2)圓上有一動(dòng)點(diǎn),,若向量,求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明此軌跡是什么曲線.
【答案】(1)或;(2),軌跡是一個(gè)焦點(diǎn)在軸上的橢圓
【解析】
(1)當(dāng)直線垂直于軸時(shí),可驗(yàn)證其滿足題意,得到直線方程為;當(dāng)直線不垂直于軸時(shí),設(shè)直線為,利用垂徑定理可求得圓心到直線距離,利用點(diǎn)到直線距離公式構(gòu)造方程求得,從而得到直線方程;(2)設(shè),利用向量坐標(biāo)運(yùn)算可得到,,根據(jù)在圓上,可代入整理得到點(diǎn)軌跡.
(1)當(dāng)直線垂直于軸時(shí),此時(shí)直線方程為
與圓的兩個(gè)交點(diǎn)坐標(biāo)為和,這兩點(diǎn)的距離為,滿足題意;
當(dāng)直線不垂直于軸時(shí),設(shè)其方程為:,即:
設(shè)圓心到此直線的距離為,則:,解得:
,解得:
此時(shí)直線方程為:
綜上所述,所求直線方程為:或
(2)設(shè)點(diǎn)的坐標(biāo)為
∵,,
∴ ,
∵ ∴,即
∴點(diǎn)的軌跡方程是,軌跡是一個(gè)焦點(diǎn)在軸上的橢圓
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某盒子內(nèi)裝有三種顏色的玻璃球,一位同學(xué)每次從中隨機(jī)拿出一個(gè)玻璃球,觀察顏色后再放回,重復(fù)了50次,得到的信息如下:觀察到紅色26次、藍(lán)色13次.如果從這個(gè)盒子內(nèi)任意取一個(gè)玻璃球,估計(jì):
(1)這個(gè)球既不是紅色也不是藍(lán)色的概率;
(2)這個(gè)球是紅色或者是藍(lán)色的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“五四青年節(jié)”到來(lái)之際,啟東中學(xué)將開展一系列的讀書教育活動(dòng).為了解高二學(xué)生讀書教育情況,決定采用分層抽樣的方法從高二年級(jí)四個(gè)社團(tuán)中隨機(jī)抽取12名學(xué)生參加問卷調(diào)査.已知各社團(tuán)人數(shù)統(tǒng)計(jì)如下:
(1)若從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來(lái)自同一個(gè)社團(tuán)的概率;
(2)在參加問卷調(diào)查的12名學(xué)生中,從來(lái)自三個(gè)社團(tuán)的學(xué)生中隨機(jī)抽取3名,用表示從社團(tuán)抽得學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形, 平面, , , 為與的交點(diǎn), 為棱上一點(diǎn).
(1)證明:平面平面;
(2)若平面,三棱錐的體積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E、F分別是PC、AD中點(diǎn),
(1)求證:DE//平面PFB;
(2)求PB與面PCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某站臺(tái)的60名候車乘客中隨機(jī)抽取15人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成5組,如表所示:
組別 | 候車時(shí)間 | 人數(shù) |
一 | 2 | |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中隨機(jī)抽取2人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來(lái)自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和都為矩形。
(Ⅰ)若,證明:直線平面;
(Ⅱ)設(shè), 分別是線段, 的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請(qǐng)證明你的結(jié)論。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com