分析 用換元法,設(shè)$\frac{1-x}{1+x}$=t(t≠-1),求出x,代入解析式得f(t)即可.
解答 解:設(shè)$\frac{1-x}{1+x}$=t(t≠-1),
∴x=$\frac{1-t}{1+t}$,
∴f(t)=$\frac{1{-(\frac{1-t}{1+t})}^{2}}{1{+(\frac{1-t}{1+t})}^{2}}$=$\frac{2t}{1{+t}^{2}}$;
即f(x)=$\frac{2x}{1{+x}^{2}}$,(x≠-1).
點(diǎn)評 本題考查了用換元法求函數(shù)解析式的應(yīng)用問題,解題時(shí)應(yīng)注意自變量取值的變化,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{14}}{3}$,$\sqrt{2}$) | B. | [$\frac{2\sqrt{14}}{3}$,2$\sqrt{2}$) | C. | [$\frac{\sqrt{14}}{3}$,$\sqrt{2}$] | D. | [$\frac{2\sqrt{14}}{3}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{74}$ | B. | 3$\sqrt{10}$ | C. | $\sqrt{14}$ | D. | $\sqrt{53}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -2 | C. | -2或1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com