【題目】如下圖,四梭錐中,底面,

,為線段上一點(diǎn),,的中點(diǎn).

(I)證明:平面;

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ) 見解析.(Ⅱ) .

【解析】分析:(I) 取的中點(diǎn),連接,證明,再證明平面. (Ⅱ) 取的中點(diǎn),連結(jié), 以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立如下圖所示的空間直角坐標(biāo)系,利用空間向量法求直線與平面所成角的正弦值.

詳解: (Ⅰ)由己知得,

的中點(diǎn),連接中點(diǎn)知

,四邊形為平行四邊形,于是..

因?yàn)?/span>平面,平面,所以平面.

(Ⅱ)的中點(diǎn),連結(jié),由,從而,

為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立如下圖所示的空間直角坐標(biāo)系,

由題意知,,

.

設(shè) 為平面的法向量,

,即,可取

故直線 與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為參數(shù),且.

(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值.

(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍.

)若對(duì)(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)結(jié)論:

當(dāng)a為任意實(shí)數(shù)時(shí),直線(a﹣1)x﹣y+2a+1=0恒過定點(diǎn)P,則過點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是;

已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標(biāo)準(zhǔn)方程是;

拋物線的準(zhǔn)線方程為.

已知雙曲線,其離心率e(1,2),則m的取值范圍是(﹣12,0).

其中正確命題的序號(hào)是___________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知為異面直線,平面平面.直線滿足,則( )

A. ,且 B. ,且

C. 相交,且交線垂直于 D. 相交,且交線平行于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育部門為了了解全市高一學(xué)生的身高發(fā)育情況,從本市全體高一學(xué)生中隨機(jī)抽取了100人的身高數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計(jì)該市高一學(xué)生的身高概率.

(I)求該市高一學(xué)生身高高于1.70米的概率,并求圖1中的值.

(II)若從該市高一學(xué)生中隨機(jī)選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認(rèn)為該市高一學(xué)生的身高發(fā)育總體是正常的.試判斷該市高一學(xué)生的身高發(fā)育總體是否正常,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);

2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 ,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),交于兩點(diǎn)

(1) 求的直角坐標(biāo)方程和的普通方程;

(2) 若,,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2cosxsinxcosx.

1)求函數(shù)fx)的最小正周期及單調(diào)遞減區(qū)間:

2)將fx)的圖象向左平移個(gè)單位后得到函數(shù)gx)的圖象,若方程gx)=m在區(qū)間[0,]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求不等式的解集;

2若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案