為了解2000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為( 。
A、40B、80C、50D、100
考點:系統(tǒng)抽樣方法
專題:概率與統(tǒng)計
分析:根據(jù)系統(tǒng)抽樣的定義即可得到結(jié)論.
解答: 解:∵樣本容量為40,
∴分段的間隔為2000÷40=50,
故選:C
點評:本題主要考查系統(tǒng)抽樣的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是滿足m+n=1,且使
1
m
+
4
n
取得最小值的正實數(shù).若曲線y=ax-m+n(a>0且a≠1)恒過定點M,則點M的坐標(biāo)為( 。
A、(
1
3
,
5
3
B、(
4
5
,
6
5
C、(
1
5
,
9
5
D、(
1
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

農(nóng)業(yè)科技員進(jìn)行種植實驗,有5種作物要種植,如果甲、乙兩種必須相鄰種植,而丙、丁不能相鄰種植,則不同的種植方法有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
|cosx|
cosx
+
tanx
|tanx|
的值域為(  )
A、{-2,2}
B、{-2,0,2}
C、[-2,2]
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
x,a,b∈R+,m=f(
a+b
2
),n=f(
ab
),p=f(
2ab
a+b
),則m,n,p的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,
2
),那么1gf(2)+1gf(5)等于(  )
A、-
1
2
B、1
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A具有以下性質(zhì):
(1)0∈A,1∈A;
(2)若x∈A,y∈A,則x-y∈A,且x≠0時,
1
x
∈A,則稱集合A是“好集”,下列命題正確的個數(shù)是(  )
①集合B=(-1,0,1)是“好集”;
②有理數(shù)集Q是“好集”;
③設(shè)集合A是“好集”,若x∈A,y∈A,則x+y∈A.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)是橢圓的左焦點,A、B是橢圓的左、右頂點,點P是橢圓上的動點,其中
|PF|的最小值是2-
2
,△PFA的面積最大值是
2
-1.
(1)求該橢圓C的方程;
(2)過點Q(1,0)的直線l與橢圓C相交于D、E兩點,又點M(4,3),記直線MD、ME的斜率分別為k1,k2,當(dāng)k1•k2最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等差數(shù)列,若a3,a7+7,a11+14構(gòu)成公比為q的等比數(shù)列,則q=( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案