A. | $\frac{4π}{3}$ | B. | 16π | C. | $\frac{32π}{3}$ | D. | $\frac{8π}{3}$ |
分析 根據(jù)對稱性,可得球心O到正三棱柱的底面的距離為1,球心O在底面ABC上的射影為底面的中心O',求出O'A,由球的截面的性質(zhì),求得半徑OA,再由球的體積公式,計(jì)算即可得到.
解答 解:根據(jù)對稱性,可得球心O到正三棱柱的底面的距離為1,
球心O在底面ABC上的射影為底面的中心O',
則O'A=$\frac{\sqrt{3}}{2}×\frac{2}{3}=\frac{\sqrt{3}}{3}$,
由球的截面的性質(zhì),可得,OA2=OO'2+O'A2,
則有OA=$\sqrt{OO{′}^{2}+O'{A}^{2}}$=$\sqrt{1+3}$=2,
則球O的體積為$\frac{4}{3}$π•OA3=$\frac{32}{3}π$.
故選:C.
點(diǎn)評 本題考查球的截面的性質(zhì),考查球與正三棱柱的關(guān)系,考查球的體積運(yùn)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x<3} | B. | {x|x<-2} | C. | {x|x<-2或x>3} | D. | {x|x>3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x3 | B. | y=-x3+1 | C. | y=|x|+1 | D. | y=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | log0.44<log0.46 | B. | 1.013.4>1.013.5 | C. | 3.50.3>3.40.3 | D. | log56<log67 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com