(1+x)7的展開(kāi)式中x2的系數(shù)是
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:由題設(shè),二項(xiàng)式(1+x)7,根據(jù)二項(xiàng)式定理知,x2項(xiàng)是展開(kāi)式的第三項(xiàng),由此得展開(kāi)式中x2的系數(shù).
解答: 解:由題意,二項(xiàng)式(1+x)7的展開(kāi)式通項(xiàng)是Tr+1=
C
r
7
xr
故展開(kāi)式中x2的系數(shù)是
C
2
7
=21
故答案為:21.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的通項(xiàng),熟練掌握二項(xiàng)式的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=(log2x2-3•log2x2+3,x∈[1,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD是一個(gè)觀光區(qū)的平面示意圖,建立平面直角坐標(biāo)系,使頂點(diǎn)A在坐標(biāo)原點(diǎn)O,B,D分別在x軸,y軸上,AD=3百米,AB=a百米(3≤a≤4)觀光區(qū)中間葉形陰影部分MN是一個(gè)人工湖,它的左下方邊緣曲線是函數(shù)y=
2
x
(1≤x≤2)的圖象的一段.為了便于游客觀光,擬在觀光區(qū)鋪設(shè)一條穿越該觀光區(qū)的直路(寬度不計(jì)),要求其與人工湖左下方邊緣曲線段M,)N相切(切點(diǎn)記為P),并把該觀光區(qū)分為兩部分,且直線/左下部分建設(shè)為花圃.設(shè)點(diǎn)j′到的AD距離為t,f(t)表示花圃的面積.
(1)求花圃面積f(t)的表達(dá)式;
(2)求f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-3x)>0,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間直角坐標(biāo)系內(nèi)M(4,1,2),點(diǎn)P是x軸上一點(diǎn),且PM=
30
,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某次數(shù)字測(cè)驗(yàn)中,記座位號(hào)為n(n=1,2,3,4)的同學(xué)的考試成績(jī)?yōu)閒(n).若f(n)∈{70,85,88,90,98,100},且滿足f(1)<f(2)≤f(3)<f(4),則這4位同學(xué)考試成績(jī)的所有可能有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,若a3+a4+a5=12,則a1+a2+…+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)在今年初貸款a萬(wàn)元,年利率為r,從今年末開(kāi)始,每年末償還x萬(wàn)元,預(yù)計(jì)恰好5年內(nèi)還清,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tan280°=a,則sin80°的結(jié)果為( 。
A、-
1
a
B、
a
1+a2
C、-
a
1+a2
D、-
1
1+a2

查看答案和解析>>

同步練習(xí)冊(cè)答案