解下列不等式:
(1)|x-2|≤4-2x
(2)|x+log3x|<|x|+|log3x|
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)原不等式化為2x-4≤x-2≤4-2x,由此求得它的解集.
(2)由條件利用絕對值不等式的性質(zhì)可知x•log3x<0,且x>0,即log3x<0,由此求得不等式的解集.
解答: 解:(1)原不等式化為2x-4≤x-2≤4-2x,求得它的解集為{x|x≤2}.
(2).由絕對值不等式的性質(zhì)可知x•log3x<0,且x>0.
∴l(xiāng)og3x<0,即0<x<1,即不等式的解集為{x|0<x<1}.
點評:本題主要考查絕對值不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.且sin2B-
6
5
sinB+
9
25
=0.
(1)求sin(B+
π
4
)的值;
(2)若a=5,b=9,求sinA的值;
(3)若b=
7
a+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-3y+1=0,點A(-1,-2),求:
(1)點A關(guān)于直線l1的對稱點A1的坐標
(2)直線 m:3x-2y-6=0關(guān)于直線l1的對稱直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4
2
,且與橢圓
x2
2
+
y2
4
=1有相同的離心率.
(Ⅰ)求橢圓M的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與M有兩個交點A、B,且
OA
OB
?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

房間里有n盞電燈,分別由n個開關(guān)控制,至少開1盞燈用以照明,共有an種不同的照明方法(其中n∈N*
(1)當n=5時,求a5;
(2)求an
(3)求證:
1
a1+1
+
1
2(a2+1)
+…+
1
n(an+1)
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品共x件,按1:2分為兩組檢查質(zhì)量,第一組平均質(zhì)量為3kg,方差為1,第二組平均質(zhì)量為6kg,方差為1,則全部產(chǎn)品的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l,m和平面α,β,γ.
①α⊥γ,β⊥γ
②l∥m,l⊥α,m⊥β
③l?α,m?α,l∥β,m∥β
④l和m異面,l?α,m?β,l∥β,m∥α
上面各項條件中能推出α∥β的是
 
項(把你認為符合條件的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若bcosA+acosB=
2
c•cosB,則角B的大小是
 

查看答案和解析>>

同步練習(xí)冊答案