分析 (1)由函數(shù)g(x)=a(x-1)2+1+b-a,a>0,所以g(x)在區(qū)間[2,3]上是增函數(shù),故$\left\{\begin{array}{l}{g(2)=1}\\{g(3)=4}\end{array}\right.$,由此解得a、b的值.
(2)由已知可得f(x)=x+$\frac{1}{x}$-2,所以令t=lgx,不等式f(lgx)-klgx≥0可化為k≤t2-2t+1,t∈[$\frac{1}{2}$,2],求出h(t)=t2-2t+1的最大值,從而求得k的取值范圍;
(3)把已知方程轉(zhuǎn)化為|2x-1|2-(3k+2)•|2x-1|+(2k+1)=0,令|2x-1|=m,則原方程有三個不同的實數(shù)解轉(zhuǎn)化為m2-(3k+2)m+(2k+1)=0有兩個不同的實數(shù)解m1,m2,其中0<m1<1,m2>1或0<m1<1,m2=1.然后運用“三個二次”的結(jié)合列式得答案.
解答 解:(1)函數(shù)g(x)=ax2-2ax+b+1=a(x-1)2+1+b-a,
因為a>0,所以g(x)在區(qū)間[2,3]上是增函數(shù),故$\left\{\begin{array}{l}{g(2)=1}\\{g(3)=4}\end{array}\right.$,解得a=1,b=0. ….(6分)
(2)由已知可得f(x)=x+$\frac{1}{x}$-2,所以令t=lgx,不等式f(lgx)-klgx≥0可化為k≤t2-2t+1.
因$x∈[\sqrt{10},100]$,故 t∈[$\frac{1}{2}$,2].故k≤t2-2t+1在t∈[$\frac{1}{2}$,2]上能成立.
記h(t)=t2-2t+1,因為 t∈[$\frac{1}{2}$,2],故 h(t)max =h(2)=1,
所以k的取值范圍是(-∞,1].
(3)令m=|2x-1|(m≥0),f(|2x-1|)+k•$\frac{2}{{|{{2^x}-1}|}}$-3k=0,即f(m)+k•$\frac{2}{m}$-3k=0,
∴m2-(3k+2)m+(2k+1)=0有兩個不同的實數(shù)解m1,m2,
其中0<m1<1,m2>1或0<m1<1,m2=1.
記F(m)=m2-(3k+2)m+(2k+1),則$\left\{\begin{array}{l}{2k+1>0}\\{F(1)=-k<0}\end{array}\right.$①或$\left\{\begin{array}{l}{2k+1>0}\\{F(1)=-k=0}\\{0<\frac{3k+2}{2}<1}\end{array}\right.$②
解①得,k>0;②無解.
∴實數(shù)k的取值范圍為(0,+∞).
點評 本題主要考查求二次函數(shù)在閉區(qū)間上的最值,函數(shù)的零點與方程根的關(guān)系,函數(shù)的恒成立問題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,關(guān)鍵是對題意得理解,考查了學(xué)生的邏輯思維能力,是壓軸題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<b<1 | B. | 0<a<a<1 | C. | a>1>b | D. | b>1>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x2=1,則x≠1且x≠-1 | B. | 若x2≠1,則x≠1且x≠-1 | ||
C. | 若x≠1且x≠-1,則x2≠1 | D. | 若x≠1或x≠-1,則x2≠1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com