已知α∈(0,
π
2
),且sinα=
7
8
sinβ,tanα=
1
4
tanβ,求α的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:計算題,三角函數(shù)的求值
分析:利用sinα=
7
8
sinβ,tanα=
1
4
tanβ,可得cosα=
7
2
cosβ,結(jié)合sin2α+cos2α=1,即可得出結(jié)論.
解答: 解:∵sinα=
7
8
sinβ,tanα=
1
4
tanβ,
∴cosα=
7
2
cosβ,
∴sin2α+cos2α=(
7
8
sinβ)2+(
7
2
cosβ)2=1
∴cosβ=
1
7

∵cosα=
7
2
cosβ,
∴cosα=
1
2
,
∵α∈(0,
π
2
),
∴α=
π
3
點評:本題考查同角三角函數(shù)基本關(guān)系的運用,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:兩圓C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0.
(1)實數(shù)k為何值時,兩圓相交;
(2)實數(shù)k為何值時,兩圓相切;
(3)實數(shù)k為何值時,兩圓相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
4
x
,x∈[1,3],其函數(shù)的最大值為
 
,最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin(2x+
π
3
)向右平移
3
個單位,再將所得的函數(shù)圖象上的各點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)與x=-
π
2
,x=
π
3
,x軸圍成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1至9的9個自然數(shù)中任取2個數(shù),分別作為對數(shù)的底數(shù)和真數(shù),共可得到多少不同的對數(shù)值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-x2)(1+
1
x
5展開式中,常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1與l2相交于點P,除點P外在直線l1上還有A1,A2,A3,A4四點,在直線l2上還有B1,B2,B3,B4,B5五點,若A1,A2,A3,A4四點與B1,B2,B3,B4,B5這五點中各取一點連成一條直線,問交點的個數(shù)最多有幾個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,偶函數(shù)f(x)的圖象如圖1,奇函數(shù)g(x)的圖象如圖2,若方程f(g(x))=0,g(f(x))=0的實根個數(shù)分別為a,b,則a+b=( 。
A、18B、21C、24D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
cx+1,0<x<c
2-
x
c2
+1,c≤x<1
,滿足f(c2)=
9
8

(1)求常數(shù)c的值
(2)已知函數(shù)g(x)=loga(cx-1)過點(-2,1),解不等式g(x)>0.

查看答案和解析>>

同步練習(xí)冊答案