連續(xù)拋兩次質(zhì)地均勻的骰子得到的點數(shù)分別為m和n,將m,n作為Q點的橫、縱坐標.
(1)記向量
a
=(m,n),
b
=(1,-1)的夾角為θ,求θ∈(0,
π
2
]的概率;
(2)求點Q落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率.
考點:幾何概型,數(shù)量積表示兩個向量的夾角
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)本題考查的知識點是古典概型的意義,關(guān)鍵是要列出連擲兩次骰子得到的點數(shù)分別為m和n,記向
a
=(m,n)的個數(shù),及滿足θ∈(0,
π
2
]的向量
a
的個數(shù),再將它們代入古典概型的計算公式進行求解;
(2)擲兩次骰子,會有6×6=36種可能,點P(m,n)落在區(qū)域|x-2|+|y-2|≤2內(nèi),即|m-2|+|n-2|≤2,有11種可能,代入古典概型的計算公式進行求解.
解答: 解:(1)連擲兩次骰子得到的點數(shù)分別為m和n,記向量
a
=(m,n)有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36個基本事件
若θ∈(0,
π
2
],則m≥n,則滿足條件的
a
=(m,n)有:
(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)
(4,1),(4,2),(4,3),(4,4),(5,1),(5,2)
(5,3),(5,4),(5,5),(6,1),(6,2),(6,3)
(6,4),(6,5),(6,6),共21個基本事件
則P=
21
36
=
7
12
;
(2)擲兩次骰子,會有6×6=36種可能.
點P(m,n)落在區(qū)域|x-2|+|y-2|≤2內(nèi),即|m-2|+|n-2|≤2,則共有以下可能性.
①(1,1)(1,2)(1,3);
②(2,1)(2,2)(2,3)(2,4);
③(3,1)(3,2)(3,3);
④(4,2);
這11個點都滿足|m-2|+|n-2|≤2,即所求概率為P=
11
36
點評:古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關(guān)系是解決問題的關(guān)鍵.解決問題的步驟是:計算滿足條件的基本事件個數(shù),及基本事件的總個數(shù),然后代入古典概型計算公式進行求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某耐磨廠對一批耐磨球的單個重量(單位:克)進行了抽樣檢測,并繪制出頻率分布直方圖,已知耐磨球單個重量的范圍為[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,104),[104,106)
(1)求圖中x的值;
(2)已知這批耐磨球共有5000個,試估計這批耐磨球中單個重量小于100克的球的個數(shù);
(3)現(xiàn)從第一組到第五組(從左到右依次為第一組、第二組、…、第五組)中各取一求放入盒中充分攪拌,然后隨機選出兩球進行配對,若選出的兩球所在的組數(shù)相鄰,則稱這兩球為“姊妹球”,試求選出的兩球為為“姊妹球”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,從頂點A1向底面ABC作垂線,垂足O恰好為AC邊的中點,四邊形A1ACC1為菱形,且∠A1AC=60°,在△ABC中,AB=BC=
2
,AB⊥BC.
(Ⅰ)求證:平面A1ACC1⊥平面ABC;
(Ⅱ)求直線A1C與平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一點E,使得OE∥平面A1AB,若不存在,說明理由;若存在,確定點E的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2+2(a∈R),f′(x)為f(x)的導函數(shù).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若對一切的實數(shù)x,有f′(x)≥|x|-
3
4
成立,求a的取值范圍;
(Ⅲ)當a=0時,在曲線y=f(x)上是否存在兩點A(x1,y1),B(x2,y2)(x1≠x2),使得曲線在A,B兩點處的切線均與直線x=2交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
3
x3-x2+bx在x=3處取得極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2n
1+x2
-x在(0,+∞)上的最小值是an(n∈N+))
(1)求數(shù)列{an}的通項公式.
(2)證明:
1
a12
+
1
a22
+
1
a32
+…+
1
an2
1
2

(3)在點列An(2n,an)….中是否存在兩點Ai,Aj 其中i,j∈N+,使直線AiAj的斜率為1,若存在,求出所有數(shù)對i,j,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察等式:
sin30°+sin90°
cos30°+cos90°
=
3
,
sin15°+sin75°
cos15°+cos75°
=1,
sin20°+sin40°
cos20°+cos40°
=
3
3
.照此規(guī)律,對于一般的角α、β,有等式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的方程可以表示為x2+y2-2x-4y+m=0,其中m∈R.
(1)若m=1,求圓C被直線x+y-1=0截得的弦長
(2)若圓C與直線l:x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B是海面上位于東西方向相距5(3+
3
)海里的兩個觀測點.現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號.位于B點南偏西60°且與B相距20
3
海里的C點的救援船立即前往營救,其航行速度為30海里/小時.求救援船直線到達D的時間和航行方向.

查看答案和解析>>

同步練習冊答案