斜率為3,在y軸上的截距為4的直線方程是( 。
A、3x-y+4=0
B、x-3y-12=0
C、3x-y-4=0
D、3x-y-12=0
考點:直線的斜截式方程
專題:直線與圓
分析:利用斜截式即可得出.
解答: 解:利用斜截式可得y=3x+4,即3x-y+4=0.
故選:A.
點評:本題考查了斜截式方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C與直線l:x+y=1相切于點A(2,1)且圓心在直線y=-2x上,
(1)求圓C的方程;
(2)過點B(3,2)作圓C的切線,求該切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=
π
12
時取得最大值4,在同一周期中,在x=
12
時取得最小值-4.
(1)求函數(shù)f(x)在[0,
3
]上的單調(diào)增區(qū)間;
(2)若f(
2
3
α+
π
12
)=2,α∈(0,π),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=ex(e=2.718…)的圖象如圖所示.
(Ⅰ)在所給坐標(biāo)系中畫出φ(x)=(e-1)x+1的圖象;
(Ⅱ)利用(Ⅰ)中所做的圖象,比較g(0.9)與φ(0.9)的大;
(Ⅲ)若f(x)=lnx+2x-6只在區(qū)間(2,3)內(nèi)有意義且連續(xù),判斷f(x)=lnx+2x-6在區(qū)間(2,3)內(nèi)存在零點c,并找出零點c的近似值x0所在的一個區(qū)間,使得|x0-c|<0.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(m+1,0,2m),
b
=(6,0,2),
a
b
,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個學(xué)校分別有1名、2名、3名學(xué)生獲獎,這6名學(xué)生要排成一排合影,則同校學(xué)生排在一起的概率是( 。
A、
1
30
B、
1
15
C、
1
10
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A中只有1,x,x2+3x三個元素,且-2∈A,求實數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形的周長為定值L,求它的面積的最大值.由此你能得到什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=(
2
5
2,b=log2
5
6
,c=2 
2
5
,則a、b、c的大小關(guān)系為.
A、a<b<c
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

同步練習(xí)冊答案