6.若-4<x<1,研究函數(shù)f(x)=$\frac{{x}^{2}-2x+2}{2x-2}$的最值.

分析 通過分離函數(shù)表達(dá)式中的分子,結(jié)合基本不等式計算即可.

解答 解:∵-4<x<1,∴0<1-x<5,
∴f(x)=$\frac{{x}^{2}-2x+2}{2x-2}$
=$\frac{(x-1)^{2}+1}{2(x-1)}$
=$\frac{x-1}{2}$+$\frac{1}{2(x-1)}$
=-$\frac{1}{2}$[(1-x)+$\frac{1}{1-x}$]
≤-$\frac{1}{2}$×2$\sqrt{(1-x)×\frac{1}{1-x}}$(當(dāng)且僅當(dāng)x=0時等號成立)
=-1,
又當(dāng)-4<x<1時,$\frac{1}{1-x}$無最小值,
綜上所述,函數(shù)f(x)的最大值為-1,無最小值.

點評 本題考查函數(shù)的最值,涉及到基本不等式的知識,分離函數(shù)表達(dá)式中的分子是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)a、b、c是三個互不相等的正整數(shù),且abc=210,若a+b+c的最大值為M,最小值為m,則M-m=90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,點A(0,b),過F,A的直線與雙曲線的一條漸近線在y軸右側(cè)的交點為B,若$\overrightarrow{AF}=(\sqrt{2}+1)\overrightarrow{AB}$,則此雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在某校舉辦的體育節(jié)上,參加定點投籃比賽的甲、乙兩個小組各有編號為1,2,3,4的4名學(xué)生.在比賽中,每人投籃10次,投中的次數(shù)統(tǒng)計如下表:
學(xué)生1號2號3號4號
甲組6697
乙組9874
(Ⅰ)從統(tǒng)計數(shù)據(jù)看,甲、乙兩個小組哪個小組成績更穩(wěn)定(用數(shù)據(jù)說明)?
(Ⅱ)從甲、乙兩組中各任選一名同學(xué),比較兩人的投中次數(shù),求甲組同學(xué)投中次數(shù)高于乙組同學(xué)投中次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=3e|x|.若存在實數(shù)t∈[-1,+∞),使得對任意的x∈[1,m],m∈Z且m>1,都有f(x+t)≤3ex,則m的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的最大值與最小值
(1)f(x)=lnx+ln(2-x),x∈[$\frac{1}{2}$,1];
(2)f(x)=x3-3x2+2,x∈[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)各項均為正數(shù)的等比數(shù)列{an}中,a1+a3=10,a3+a5=40.設(shè)bn=log2an
(1)求數(shù)列{bn}的通項公式;     
(2)若c1=1,cn+1=cn+$\frac{b_n}{a_n}$,求證:cn<3.
(3)是否存在正整數(shù)k,使得$\frac{1}{_{n}+1}$+$\frac{1}{_{n}+2}$+…+$\frac{1}{_{n+n}}$>$\frac{k}{10}$對任意正整數(shù)n均成立?若存在,求出k的最大值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=2cosx+|cosx|.
(1)判斷f(x)的奇偶性;
(2)畫出f(x)在區(qū)間[0,2π]上的圖象,并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線y2=2px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點F,點A是兩曲線的一個交點,且AF⊥x軸,則雙曲線的離心率為(  )
A.$\sqrt{2}$+2B.$\sqrt{5}$+1C.$\sqrt{3}$+1D.$\sqrt{2}$+1

查看答案和解析>>

同步練習(xí)冊答案