【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且該橢圓的離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為,點(diǎn)在線段的垂直平分線上,且,求的值.
【答案】(1)(2)
【解析】】試題分析: 由拋物線方程求得焦點(diǎn)坐標(biāo),求得的值,由雙曲線的離心率公式求得其離心率,則,即可求得橢圓的半長(zhǎng)軸的值,則,即可求得半短軸,即可求得橢圓的方程;
⑵將直線方程代入橢圓方程,由韋達(dá)定理求得,則,
,即可求得點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得點(diǎn)坐標(biāo),分類當(dāng)及當(dāng)時(shí),由,根據(jù)向量的坐標(biāo)表示,即可求得的值
解析:(I)拋物線的焦點(diǎn)坐標(biāo)為,所以
雙曲線的離心率為,所以橢圓的離心率,
故橢圓的
所以橢圓方程為:
(II)由(I)知,且直線的斜率必存在,設(shè)斜率為,
則直線方程為: ,設(shè)點(diǎn)的坐標(biāo)為,
聯(lián)立方程,方程消去整理得:
兩點(diǎn)坐標(biāo)滿足上述方程,由韋達(dá)定理得,
所以,
所以, 的坐標(biāo)為,
線段的中點(diǎn)為,則點(diǎn)坐標(biāo)為
以下分兩種情況:
當(dāng)時(shí),點(diǎn)的坐標(biāo)為,線段的垂直平分線為軸,于是
時(shí),線段的垂直平分線方程為
,令,解得
由
所以:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=x2lnx,g(x)=ax3﹣x2 .
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實(shí)數(shù)a的取值范圍;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…為自然對(duì)數(shù)的底數(shù))上有解的最小a的值為an , 數(shù)列{an}的前n項(xiàng)和為Sn , 求證:Sn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2+2n,(n∈N*),求:
(1)數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和 Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),記不等式f(x)≤4的解集為M,記函數(shù)的定義域?yàn)榧螻.
(Ⅰ)求集合M和N;
(Ⅱ)求M∩N和M∪(RN).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,把函數(shù) 的圖象向右平移 個(gè)單位,得到函數(shù) 的圖象,若 是 在 內(nèi)的兩根,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)為一次函數(shù),g(x)為二次函數(shù),且f[g(x)]=g[f(x)].
(1)求f(x)的解析式;
(2)若y=g(x)與x軸及y=f(x)都相切,且g(0)= ,求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若 ,討論函數(shù) 的單調(diào)性;
(2)曲線 與直線 交于 , 兩點(diǎn),其中 ,若直線 斜率為 ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測(cè)算,自行車廠的總收益(單位:元)滿足分段函數(shù)h(x),其中,x是新樣式單車的月產(chǎn)量(單位:件),利潤(rùn)=總收益﹣總成本.
(1)試將自行車廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com