P(2,-3)在曲線x2-ay2=1上,則a的值為
 
考點:曲線與方程
專題:綜合題
分析:直接把點的坐標代入曲線方程得答案.
解答: 解:∵P(2,-3)在曲線x2-ay2=1上,
∴22-a(-3)2=1,即4-9a=1,解得:a=
1
3

故答案為:
1
3
點評:本題考查了曲線方程,考查了曲線上的點與曲線間的關系,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“若x,y都是正數(shù),則x+y為正數(shù)”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AC⊥BB1;
(Ⅱ)若P是棱B1C1的中點,求平面PAB將三棱柱ABC-A1B1C1分成的兩部分體積之比.擼啊.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x+1,則過點(1,-1)的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為(-π,π),且函數(shù)y=f(x+
1
2
)的圖象關于直線x=-
1
2
對稱,當x∈(0,π)時,f(x)=-f′(
π
2
)sinx-πl(wèi)nx,其中f′(x)是y=f(x)的導函數(shù),若a=f(30.3),b=f(logπ3),c=f(log2
1
4
),則a,b,c的大小關系是(  )
A、a<b<c
B、c<a<b
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓的方程式x2+y2=36,記過點P(1,2)的最長弦和最短弦分別為AB、CD,則直線AB、CD的斜率之和等于(  )
A、-1
B、
3
2
C、1
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列a,b,c成等比數(shù)列,數(shù)列a,
b(b-1)
2
,c成等差數(shù)列,當1<a<3<c<7時,b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
6
,O為AC與BD的交點,E為棱PB上一點.
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P-EAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線E:y2=2px(p>0)的焦點F的直線l交E于A、B兩點,由點A、B作拋物線準線m的垂線,垂足分別為點D、C,向四邊形ABCD內部隨機投一點,則該點落在△CFD內部的概率的最大值為
 

查看答案和解析>>

同步練習冊答案