20.設(shè)a>0,a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{2{a}^{x},x≤1}\\{lo{g}_{a}({x}^{2}-1),x>1}\end{array}\right.$,且f(2$\sqrt{2}$)=1,則f(f(2))=6.

分析 利用分段函數(shù),逐步求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{2{a}^{x},x≤1}\\{lo{g}_{a}({x}^{2}-1),x>1}\end{array}\right.$,
當(dāng)f(2$\sqrt{2}$)=$lo{g}_{a}({(2\sqrt{2})}^{2}-1)$=1,解得a=7,
則f(f(2))=f($lo{g}_{7}({2}^{2}-1)$)=f(log73)=$2×{7}^{lo{g}_{7}3}$=6.
故答案為:6.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.定義:稱$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個(gè)正數(shù)p1,p2,…,pn的“均倒數(shù)”,已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{n+2}$.
(1)求{an}的通項(xiàng)公式
(2)設(shè)Cn=$\frac{{a}_{n}}{{3}^{n}}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.三棱錐P-ABC,PA=PB=PC=2,∠APC=∠APB=∠BPC=$\frac{π}{6}$,一只螞蟻從A處出發(fā)沿三棱錐的側(cè)面爬一周,最短路線為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=2|x-1|-|x+2|,解不等式f(x)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.y=(sinx-1)2+2的值域?yàn)閇2,6],當(dāng)y取最大值時(shí),x=2kπ-$\frac{π}{2}$(k∈Z);當(dāng)y取最小值時(shí),x=2kπ+$\frac{π}{2}$(k∈Z),周期為2π,單調(diào)遞增區(qū)間為[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z);單調(diào)遞減區(qū)間為[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC中,C=2A,cosA=$\frac{3}{4}$,且AB•BC=24,則AC的長(zhǎng)度為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若數(shù)列{an}的首項(xiàng)a1=2,an+1=(2+$\frac{2}{n}$)an,則an=n•2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知△ABC中,a+b=10,c=6,∠C=60°,求三角形的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow{AB}$=(-2,3),C(-3,4),$\overrightarrow{CD}$=-3$\overrightarrow{AB}$,求點(diǎn)D的坐標(biāo)為(4,12).

查看答案和解析>>

同步練習(xí)冊(cè)答案