【題目】已知橢圓 的焦點和上頂點分別為F1、F2、B,定義:△F1BF2為橢圓C的“特征三角形”,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點 是橢圓 的一個焦點,且C1上任意一點到它的兩焦點的距離之和為4.
(1)若橢圓C2與橢圓C1相似,且C2與C1的相似比為2:1,求橢圓C2的方程;
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任意一點,若點Q是直線y=nx與拋物線 異于原點的交點,證明:點Q一定在雙曲線4x2﹣4y2=1上;
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb , 是否存在正方形ABCD,(設其面積為S),使得A、C在直線l上,B、D在曲線Cb上?若存在,求出函數(shù)S=f(b)的解析式及定義域;若不存在,請說明理由.
【答案】
(1)解:橢圓的一個焦點為 ,|PF1|+|PF2|=2a=4,
∴b2=a2﹣c2=1,則橢圓C1: ,
設C2: ,相似比為2,a2=4;b2=2,
∴橢圓C2:
(2)證明:點P(m,n)在橢圓上,則 ,設點Q(x0,y0),
, ,
∴4x02﹣4y02= ﹣ = = =1,
∴點Q在雙曲線4x2﹣4y2=1上
(3)解:橢圓C1: ,相似比為b,則橢圓Cb的方程為: ,
由題意:只需Cb上存在兩點B、D關于直線y=x+1對稱即可
設BD:y=﹣x+m,設BD中點為E(x0,y0),B(x1,y1),D(x2,y2),
,5x2﹣8mx+4m2﹣4b2=0,
△=64m2﹣16×5×(m2﹣b2)>0,5b2>m2,
由韋達定理知:x0= ,y0=﹣x0+m= m,
E(x0,y0)在直線y=x+1上,
則 m= +1
解得:m=﹣ ,∴b2> ,則b> ,
此時正方形的邊長為 ,
∴正方形的面積為S=f(b)=( )2,
丨BD丨= = ,
∴函數(shù)S=f(b)的解析式: ,定義域為
【解析】(1)由題意c= ,a=2,則b2=a2﹣c2=1,即可求得橢圓C1的方程,根據相似比2,a2=4;b2=2,即可求得橢圓C2的方程;(2)由題設條件知 ,設點Q(x0,y0),由題設條件能推出 ,即可求得 ,即可求得4x2﹣4y2=1;(3)橢圓C1: ,相似比為b,則橢圓Cb的方程,由題意:只需Cb上存在兩點B、D關于直線y=x+1對稱即可.設BD:y=﹣x+m,代入橢圓方程,設BD中點為E(x0,y0),然后利用根與系數(shù)的關系進行求解.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(1)若∠DAC=30°,求角B的大;
(2)若BD=2DC,且AD=3 ,求DC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為y=x+2,點P是拋物線y2=4x上到直線l距離最小的點,點A是拋物線上異于點P的點,直線AP與直線l交于點Q,過點Q與x軸平行的直線與拋物線y2=4x交于點B.
(Ⅰ)求點P的坐標;
(Ⅱ)證明直線AB恒過定點,并求這個定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{an}的前n項和為Sn , 且Tn= ,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當x= 時,函數(shù)f(x)取得最小值,則下列結論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),滿足f(﹣ +x)=f( +x),當x∈[0, ]時,f(x)=ln(x2﹣x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( )
A.3
B.5
C.7
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (0≤α<π,t為參數(shù)),曲線C的極坐標方程為ρ= .
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(Ⅱ)若直線l經過點(1,0),求直線l被曲線C截得的線段AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點.
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線DH與平面BDEF所成角的正弦值;
(Ⅲ)求二面角H﹣BD﹣C的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】=在△ABC中,角A,B,C的對邊分別為a,b,c,已知2(tanA+tanB)= + .
(Ⅰ)證明:a+b=2c;
(Ⅱ)求cosC的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com