13.已知$\frac{sinα-cosα}{sinα+cosα}$=2,則tanα=-3.

分析 已知等式左邊分子分母除以cosα,利用同角三角函數(shù)間基本關(guān)系化簡,將tanα的值代入計算即可求出值.

解答 解:∵$\frac{sinα-cosα}{sinα+cosα}$=$\frac{tanα-1}{tanα+1}$=2,即tanα-1=2tanα+2,
∴tanα=-3,
故答案為:-3

點評 此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知M={x|(x-a)2<1},N={x|x2-5x-24<0},若M是N的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),R1,R2是它實軸的兩個端點,Q是其虛軸的一個端點,已知漸近線的方向向量是(1,$\sqrt{3}$)與(1,-$\sqrt{3}$),△QR1R2的面積是$\sqrt{3}$,O是坐標(biāo)原點,直線y=kx+m與雙曲線C交于A,B兩點,且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$.
(1)求雙曲線C的方程;
(2)求點P(k,m)的軌跡方程;
(3)求證:原點O到直線AB的距離是定值,并求弦|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求f(x)=sinxcosx+sinx-cosx的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=$\frac{1}{{2}^{x}-2}$的值域是(-∞,$-\frac{1}{2}$)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院  抄錄了1至6月份每月10日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期晝夜溫差x(℃)就診人數(shù)y(人)
1月10日1022
2月10日1125
3月10日1329
4月10日1226
5月10日816
6月10日612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}-\overline{x}{y}_{i}-\overline{y}}{\sum_{i=1}^{n}{x}_{i}-\overline{{x}^{2}}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求極限:$\underset{lim}{x→0}$$\frac{cosx-{e}^{-\frac{{x}^{2}}{2}}}{{x}^{2}[x+ln(1-x)]}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3},A⊆S,a1,a2,a3滿足a1<a2<a3且a3-a2≤6,那么滿足條件的集合A的個數(shù)為83.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若ab+a-b=2$\sqrt{2}$,求ab-a-b的值.

查看答案和解析>>

同步練習(xí)冊答案