【題目】拋物線(xiàn)的焦點(diǎn)為F,斜率為正的直線(xiàn)l過(guò)點(diǎn)F交拋物線(xiàn)于AB兩點(diǎn),滿(mǎn)足

(1)求直線(xiàn)l的斜率;

(2)設(shè)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,求四邊形的面積的最小值.

【答案】(1); (2)

【解析】

1)依題意,設(shè)直線(xiàn)方程為,代入拋物線(xiàn)方程,由韋達(dá)定理知:,由,聯(lián)立求解,即可求出直線(xiàn)l的斜率。

2)由(1)知:

四邊形的面積等于,又

代入化簡(jiǎn)可得,即可求出四邊形的面積的最小值。

1)依題意,設(shè)直線(xiàn)方程為,

,消去,

設(shè),,由韋達(dá)定理可得

,①

因?yàn)?/span>,所以,②

聯(lián)立①和②,消去

所以直線(xiàn)l的斜率是

2

由點(diǎn)與原點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),得是線(xiàn)段的中點(diǎn),從而點(diǎn)與點(diǎn)到直線(xiàn)l的距離相等,所以四邊形的面積等于,

因?yàn)?/span>

所以,四邊形的面積的最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1(x3)2(y1)24和圓C2(x4)2(y5)24.

(1)若直線(xiàn)l過(guò)點(diǎn)A(40),且被圓C1截得的弦長(zhǎng)為2,求直線(xiàn)l的方程;

(2)設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn)l1l2,它們分別與圓C1和圓C2相交,且直線(xiàn)l1被圓C1截得的弦長(zhǎng)與直線(xiàn)l2被圓C2截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 平面 , , 為線(xiàn)段上的點(diǎn).

(1)證明: 平面;

(2)若的中點(diǎn),求與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若函數(shù)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

2)令,若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分12分如圖所示,在長(zhǎng)方體,、分別是的中點(diǎn),且平面.

1的值;

2求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求的取值范圍;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正弦型函數(shù)有如下性質(zhì):最大值為,最小值為;相鄰兩條對(duì)稱(chēng)軸間的距離為.

(I)求函數(shù)解析式;

(II)當(dāng)時(shí),求函數(shù)的值域.

(III)若方程在區(qū)間上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于正整數(shù),定義,其中、為非負(fù)整數(shù),,且.求最大的正整數(shù),使得存在正整數(shù),對(duì)于任意的正整數(shù),都有.證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案