分析 利用f(x)、g(x)的奇偶性可判斷F(x)-2的奇偶性,由F(x)在(0,+∞)上的最大值可得F(x)-2的最大值,由其奇偶性可得F(x)-2在對(duì)稱區(qū)間(-∞,0)上的最值情況,從而可得F(x)的最值情況.
解答 解:由F(x)=af(x)+bg(x)+2,得F(x)-2=af(x)+bg(x),
∵f(x)和g(x)都是奇函數(shù),
∴F(-x)-2=af(-x)+bg(-x)=-af(x)-bg(x)=-[af(x)+bg(x)]=-[F(x)-2],
∴F(x)-2是奇函數(shù),
∵F(x)在(0,+∞)上有最大值8,即F(x)≤8,
∴F(x)-2≤6,
當(dāng)x∈(-∞,0)時(shí),-x∈(0,+∞),
則F(-x)-2≤6,即-[F(x)-2]≤6,
∴F(x)-2≥-6,即F(x)≥-4,
∴x∈(-∞,0)時(shí),F(xiàn)(x)有最小值-4.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性及其應(yīng)用,考查函數(shù)的最值求解,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x∈M,y∈M | B. | x∈M,y∉M | C. | x∉M,y∈M | D. | x∉M,y∉M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3π}{8}$ | B. | -$\frac{π}{2}$ | C. | -$\frac{5π}{6}$ | D. | -$\frac{3π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com