10.定義在R上的函數(shù)f(x),對任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則( 。
A.f(3)<f(1)<f(2)B.f(1)<f(2)<f(3)C.f(2)<f(1)<f(3)D.f(3)<f(2)<f(1)

分析 由條件得出函數(shù)f(x)在R上單調(diào)遞減,由此得出結(jié)論.

解答 解:由定義在R上的函數(shù)f(x),對任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
可得函數(shù)f(x)在R上單調(diào)遞減.
故有f(3)<f(2)<f(1),
故選:D.

點評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.若關于x的不等式ex-ax-b≥0對任意實數(shù)x恒成立,則ab的最大值為( 。
A.$\sqrt{e}$B.e2C.eD.$\frac{e}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,邊長為2的正方形ABCD繞AB邊所在直線旋轉(zhuǎn)一定的角度(小于180°)到ABEF的位置.
(1)若∠CBE=120°,求三棱錐B-ADF的外接球的表面積;
(2)若K為線段BE上異于B,E的點,CE=2$\sqrt{2}$.設直線AK與平面BDF所成角為φ,當30°≤φ≤45°時,求BK的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x},x≥3\\ f(x+1),x<3\end{array}\right.$,則$f(1-{log_{\frac{1}{2}}}3)$=$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={x|-4<x≤7},B={x|-5≤x<6},N={x|a-4<x<a+8},全集U=R.
(Ⅰ)求A∩B,A∪B
(Ⅱ)若(CUB)∪N=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.曲線y=xlnx在點(1,0)處的切線方程是(  )
A.y=x-1B.y=x+1C.y=2x-2D.y=2x+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在等比數(shù)列{an}中,a1=3,a3=12,則a5=( 。
A.48B.-48C.±48D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若a=20.1,b=0.12,c=log20.1,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設數(shù)列{an}為單調(diào)遞增的等差數(shù)列,a1=1,且a3,a6,a12依次成等比數(shù)列.
(1)求an;
(2)若bn=$\frac{{2}^{a}n}{{{(2}^{a}n)}^{2}+3{•2}^{a}n+3}$,設數(shù)列{bn}的前n項和Tn,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案