已知P(1,1)是直線l被橢圓
x2
4
+
y2
3
=1所截得的線段的中點,則直線l的方程為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)直線l與橢圓交于P1(x1,y1)、P2(x2,y2),由“點差法”可求出直線l的斜率k=
y1-y2
x1-x2
=-
3(x1+x2)
4(y1+y2)
=-
3×2
4×2
=-
3
4
.再由由點斜式可得l的方程.
解答: 解:設(shè)直線l與橢圓交于P1(x1,y1)、P2(x2,y2),
將P1、P2兩點坐標代入橢圓方程相減得直線l斜率
k=
y1-y2
x1-x2
=-
3(x1+x2)
4(y1+y2)
=-
3×2
4×2
=-
3
4

由點斜式可得l的方程3x+4y-7=0
點評:本題考查橢圓的中點弦方程,解題的常規(guī)方法是“點差法”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題:
①“正三角形都相似”的逆命題;
②已知樣本9,10,11,x,y的平均數(shù)是10,標準差是
2
,則xy=100;
③“-3<m<5”是“方程
x2
5-m
+
y2
m+3
=1
表示橢圓”的必要不充分條件;
④△ABC中,頂點A,B的坐標為A(-2,0),B(2,0),則直角頂點C的軌跡方程是x2+y2=4
其中正確命題的序號是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題正確的是( 。
①線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱;
②殘差平方和越小的模型,擬合的效果越好;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
④隨機誤差e是衡量預(yù)報精確度的一個量,它的平均值為0.
A、①③B、②④C、①④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=
n
3
,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)當直線l與圓C相交時,求直線l被圓C截得的最短弦長及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有6×6的方陣,3輛完全相同的紅車,3輛完全相同的黑車,它們均不在同一行且不在同一列,則所有的排列方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f′(x)>2x(x∈R),且f(1)=2,則不等式f(x)-x2>1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
(1)平行于同一直線的兩個平面平行;
(2)平行于同一平面的兩條直線平行;
(3)垂直于同一直線的兩條直線平行;
(4)垂直于同一平面的兩條直線平行.
其中正確命題的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個物體在相距為423m的同一直線上從0s開始同時相向運動,物體A的運動速度v與時間t之間的關(guān)系為v=2t+1(v的單位是m/s,t的單位是s),物體B的運動速度v與時間t之間的關(guān)系為v=1+8t,.則它們相遇時,A物體的運動路程為
 

查看答案和解析>>

同步練習(xí)冊答案