數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=
n
3
,則數(shù)列{an}的通項(xiàng)公式為
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:構(gòu)造新數(shù)列,利用作差法即可.
解答: 解:當(dāng)n≥2時(shí),a1+3a2+32a3+…+3n-1an=
n
3
,
a1+3a2+32a3+…+3n-2an-1=
n-1
3
,
兩式相減得3n-1an=
n
3
-
n-1
3
=
1
3
,
則an=
1
3n
,
當(dāng)n=1時(shí),a1=
1
3
滿足an=
1
3n
,
綜上an=
1
3n

故答案為:an=
1
3n
點(diǎn)評(píng):本題主要考查數(shù)列通項(xiàng)公式的求解,根據(jù)作差法是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足:a1=1,a2=2,an=
an-1
an-2
(n≥3且n∈N),則a2014=( 。
A、1
B、2
C、
1
2
D、2-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=
n
 (n=2k-1)
ak
 (n=2k)
(k∈N*),設(shè)f(n)=a1+a2+a3+…+a2n-1+a2n,則f(2014)-f(2013)=(  )
A、42012
B、42013
C、42014
D、42015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABCA1B1C1中,∠ABC=90°,BC=2,CC1=4,點(diǎn)E在線段BB1上,且EB1=1,D,F(xiàn),G分別為CC1,C1B1,C1A1的中點(diǎn).求證:
(1)B1D⊥平面ABD;
(2)平面EGF∥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C1:x2+y2-2x=0與直線l:y-mx-m=0有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A、(-
3
3
3
3
B、(-
3
3
,0)(0,
3
3
C、[-
3
3
,
3
3
]
D、(-∞,-
3
3
)(
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(-1,-1)在圓x2+y2+4mx-2y+5m=0的外部,則實(shí)數(shù)m的取值范圍為( 。
A、(-4,+∞)
B、(-∞,
1
4
)∪(1,+∞)
C、(-4,
1
4
)∪(1,+∞)
D、(
1
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(1,1)是直線l被橢圓
x2
4
+
y2
3
=1所截得的線段的中點(diǎn),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)是增函數(shù),也是偶函數(shù)
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)多面體的直觀圖(圖1)和三視圖(圖2)如圖所示,其中M,N分別是AB,AC的中點(diǎn),G是DF上的一動(dòng)點(diǎn).
(1)求該多面體的體積與表面積;
(2)當(dāng)FG=GD時(shí),在棱AD上確定一點(diǎn)P,使得GP∥平面FMC,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案