6.已知A,B,C為△ABC的三個(gè)內(nèi)角,命題p:A=B;命題q:sinA=sinB.則¬p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 A,B,C為△ABC的三個(gè)內(nèi)角,A=B?sinA=sinB,繼而得到p是q的充分必要條件,所以¬p是¬q的充分必要條件.問(wèn)題得以解決.

解答 解:∵A,B,C為△ABC的三個(gè)內(nèi)角,A=B?sinA=sinB,
∴p⇒q,q⇒p,
∴p是q的充分必要條件,
∴¬p是¬q的充分必要條件.
故選:C.

點(diǎn)評(píng) 本題以三角形為載體,考查命題充要條件的意義和判斷方法,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知某次期中考試中,甲、乙兩組學(xué)生的數(shù)學(xué)成績(jī)?nèi)缦拢簞t下列結(jié)論正確的是(  )
甲:88 100 95 86 95 91 84 74 92 83
乙:93   89 81 77 96 78 77 85 89 86.
A.$\overline{x}$>$\overline{x}$,s>sB.$\overline{x}$甲>$\overline{x}$,s<sC.$\overline{x}$甲<$\overline{x}$,s>sD.$\overline{x}$甲<$\overline{x}$,s<s

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):$\root{3}{{a}^{\frac{1}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}•\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}•\sqrt{{a}^{-1}}}$(a>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x∈[$\frac{1}{2}$,2]時(shí),函數(shù)f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.
(1)如果“p或q”為真命題,求c的取值范圍.
(2)如果“p且q”為真命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則(x-2)2+y2的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2,an,Sn成等差數(shù)列.
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若bn=an+log2$\frac{1}{a_n}$,Tn=b1+b2+…+bn,求使Tn-2n+1+47<0成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若向量 $\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,-3)滿足$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)m的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在一次數(shù)學(xué)實(shí)驗(yàn)中,運(yùn)用計(jì)算器采集到如下一組數(shù)據(jù):
x-2.0-1.001.02.03.0
y0.240.5112.023.988.02
則y關(guān)于x的函數(shù)關(guān)系與下列最接近的函數(shù)(其中a、b、c為待定系數(shù))是( 。
A.y=a+bxB.y=a+bxC.f(x)=ax2+bD.y=a+$\frac{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案