(2012•豐臺(tái)區(qū)一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且經(jīng)過點(diǎn)M(-2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),連接MA,MB并延長(zhǎng)交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且
1
y1
+
1
y2
=
1
yP
+
1
yQ
.求證:直線l過定點(diǎn).
分析:(Ⅰ)利用橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且經(jīng)過點(diǎn)M(-2,0),可求橢圓的幾何量,從而可求
橢圓方程;
(Ⅱ)直線方程與橢圓方程聯(lián)立,利用 
1
y1
+
1
y2
=
1
yP
+
1
yQ
,及韋達(dá)定理,可得y=kx-k,故直線l過定點(diǎn).
解答:(Ⅰ)解:∵橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且經(jīng)過點(diǎn)M(-2,0).
∴a=2,
c
a
=
2
2
,∴c=
2
.                        …(2分)
∵a2=b2+c2,∴b=
2
.                            …(3分)
橢圓方程為
x2
4
+
y2
2
=1
.                                      …(5分)
(Ⅱ)證明:
x2+2y2=4
y=kx+m
消y得  (2k2+1)x2+4kmx+2m2-4=0,△>0.             …(6分)
因?yàn)锳(x1,y1),B(x2,y2),所以x1+x2=-
4km
2k2+1
,x1x2=
2m2-4
2k2+1
.          …(7分)
設(shè)直線MA:y=
y1
x1+2
(x+2)
,則yP=
6y1
x1+2
;同理yQ=
6y2
x2+2
…(9分)
因?yàn)?nbsp;
1
y1
+
1
y2
=
1
yP
+
1
yQ
,所以 
6
6y1
+
6
6y2
=
x1+2
6y1
+
x2+2
6y2
,即
x1-4
6y1
+
x2-4
6y2
=0
.     …(10分)
所以 (x1-4)y2+(x2-4)y1=0,
所以 (x1-4)(kx2+m)+(x2-4)(kx1+m)=0,2kx1x2+m(x1+x2)-4k(x1+x2)-8m=0,所以2k
2m2-4
2k2+1
+m(-
4km
2k2+1
)-4k(-
4km
2k2+1
)-8m=0

所以 
-8k-8m
2k2+1
=0
,得 m=-k.                           …(13分)
則y=kx-k,故l過定點(diǎn)(1,0).                              …(14分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查直線過定點(diǎn),正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),函數(shù)f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)某班共有學(xué)生40人,將一次數(shù)學(xué)考試成績(jī)(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請(qǐng)根據(jù)圖中所給數(shù)據(jù),求出a的值;
(Ⅱ)從成績(jī)?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選3名學(xué)生,求這3名學(xué)生的成績(jī)都在[60,70)內(nèi)的概率;
(Ⅲ)為了了解學(xué)生本次考試的失分情況,從成績(jī)?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選取3人的成績(jī)進(jìn)行分析,用X表示所選學(xué)生成績(jī)?cè)赱60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)已知向量
a
=(sinθ,cosθ)
b
=(3,4)
,若
a
b
,則tan2θ等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)設(shè)a=0.64.2,b=70.6,c=log0.67,則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當(dāng)-1<x≤1時(shí),f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|至少有6個(gè)零點(diǎn),則a的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案