顯然,圍成直三棱柱的底面為直角三角形,若兩直角邊分別為x和y,則x2+y2是長(zhǎng)方形木板的長(zhǎng)或?qū)?定值)的平方.這樣,本例的問題主要體現(xiàn)在均值不等式的應(yīng)用上.
解:一).小強(qiáng)用直尺測(cè)出木板的長(zhǎng)為a,寬為b,依題可知:a>b>0,且兩墻夾角(即二面角)為90°. (1)a作底邊,設(shè)S底為底面直角三角形的面積,兩直角邊一個(gè)是x,一個(gè)是y,則有: S底=xy,V1=(xy)·b,且x2+y2=a2 ∵x2+y2≥2xy ∴xy≤ ∴V1≤,當(dāng)且僅當(dāng)x=y=a時(shí)取“=”號(hào). (2)b作底邊,同(1)可得V2≤,當(dāng)且僅當(dāng)x=y=b時(shí)取“=”號(hào). 又a>b>0 ∴ab>0,a-b>0 ∴V1-V2=-=ab(a-b)>0 ∴V1>V2,即> 故把長(zhǎng)方形木板的長(zhǎng)邊放在底面,且圍成的直三棱柱的底面是等腰直角三角形時(shí),容積最大. 二).若兩面夾角(即二面角)換成α時(shí),解答如下: (1)設(shè)用矩形木板長(zhǎng)a作直三棱柱的側(cè)棱,寬b作為底面的一條邊,底面三角形的另兩邊的長(zhǎng)分別是x,y,體積為V1,則有: ∴xy=,x2+y2=b2+≥2xy ∴b2+≥ 整理得: V1≤ab2·cot,當(dāng)x=y時(shí)取“=”號(hào). (2)設(shè)矩形木板的寬b作側(cè)棱,則 當(dāng)x=y時(shí),V2=a2b·cot. ∵a>b>0,∴ab>0,a-b>0 ∴a2b>ab2 即V2>V1 <故把矩形木板的長(zhǎng)邊放在底面,且圍成的直三棱柱的底面是等腰三角形(頂角為α)時(shí),容積最大,且最大值Vmax=a2b·cot.
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修5 2.3等比數(shù)列練習(xí)卷(解析版) 題型:填空題
已知a>0,b>0,a在a與b之間插入n個(gè)正數(shù)x1,x2,…,xn,使a,x1,x2…,xn,b成等比數(shù)列,則=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com