【題目】函數(shù)f(x)同時滿足①f(x)為偶函數(shù);②對任意x,有f( ﹣x)=f( +x),則函數(shù)f(x)的解析式可以是(
A.f(x)=cos2x
B.
C.f(x)=cos6x
D.

【答案】D
【解析】解:由題意可得函數(shù)f(x)是偶函數(shù)且圖象關(guān)于x= 對稱. 由于f(x)=cos2x的圖象的對稱軸為2x=kπ,k∈z,即 x= ,k∈z,故不滿足條件.
由于f(x)= =﹣sin2x,不是偶函數(shù),故不滿足條件.
由于f(x)=xos6x的對稱軸為 6x=kπ,k∈z,即 x= ,k∈z,故不滿足條件.
由于f(x)=sin(4x+ )=﹣cos4x,是偶函數(shù),且對稱軸為4x=kπ,k∈z,即 x= ,k∈z,故滿足條件.
故選D.
【考點精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識點,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2016年12月1日,漢孝城際鐵路正式通車運營.除始發(fā)站(漢口站)與終到站(孝感東站)外,目前沿途設有7個?空荆渲,武漢市轄區(qū)內(nèi)有4站(后湖站、金銀潭站、天河機場站、天河街站),孝感市轄區(qū)內(nèi)有3站(閔集站、毛陳站、槐蔭站).為了了解該線路運營狀況,交通管理部門計劃從這7個車站中任選3站調(diào)研.
(1)求孝感市轄區(qū)內(nèi)至少選中1個車站的概率;
(2)若孝感市轄區(qū)內(nèi)共選中了X個車站,求隨機變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個正六角星薄片(其對稱軸與水面垂直)勻速地升出水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導函數(shù)y=S'(t)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校統(tǒng)考中,甲、乙兩班數(shù)學學科前10名的成績?nèi)绫恚?
(I)若已知甲班10位同學數(shù)學成績的中位數(shù)為125,乙班10位同學數(shù)學成績的平均分為130,求x,y的值;
(Ⅱ)設定分數(shù)在135分之上的學生為數(shù)學尖優(yōu)生,從甲、乙兩班的所有數(shù)學尖優(yōu)生中任兩人,求兩人在同一班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在路邊安裝路燈,路寬為OD,燈柱OB長為h米,燈桿AB長為1米,且燈桿與燈柱成120°角,路燈采用圓錐形燈罩,其軸截面的頂角為2θ,燈罩軸線AC與燈桿AB垂直.
(1)設燈罩軸線與路面的交點為C,若OC=5 米,求燈柱OB長;
(2)設h=10米,若燈罩軸截面的兩條母線所在直線一條恰好經(jīng)過點O,另一條與地面的交點為E(如圖2);
(i)求cosθ的值;
(ii)求該路燈照在路面上的寬度OE的長;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若b(tanA+tanB)= ctanB,BC邊的中線長為1,則a的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a∈R,函數(shù)f(x)=cosx(asinx﹣cosx)+cos2 ﹣x)滿足f(﹣ )=f(0).
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)設銳角△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且 = ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某班50名學生身高的頻率分布直方圖,那么身高在區(qū)間[150,170)內(nèi)的學生約有人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn , 且an= (n∈N*). (Ⅰ)若數(shù)列{an+t}是等比數(shù)列,求t的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)記bn= + ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案