【題目】已知正方體ABCD-A1B1C1D1的棱長為4,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM∥平面A1DE,則動點M的軌跡長度為______.
【答案】2
【解析】
設(shè)平面DA1E與直線B1C1交于點F,連接EF,則F為B1C1的中點.分別取B1B、BC的中點N、O,連接AN、ON、AO,可證出平面A1DE∥平面ANO,據(jù)此確定點M的軌跡進一步求解其長度即可.
設(shè)平面DA1E與直線B1C1交于點F,連接EF,則F為B1C1的中點.
分別取B1B、BC的中點N、O,連接AN、ON、AO,
則∵A1F∥AO,AN∥DE,A1F,DE平面A1DE,
AO,AN平面ANO,
∴A1F∥平面ANO.同理可得DE∥平面ANO,
∵A1F、DE是平面A1DE內(nèi)的相交直線,
∴平面A1DE∥平面ANO,
所以NO∥平面A1DE,
∴直線NO平面A1DE,
∴M的軌跡被正方形BCC1B1截得的線段是線段NO.
∴M的軌跡被正方形BCC1B1截得的線段長NO=2.
科目:高中數(shù)學 來源: 題型:
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
【答案】(1);(2)見解析
【解析】試題分析:(1)甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,
②不同的角度可以有不同的答案
試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,
乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:
,
(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則
,
,
乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則
,
②、答案一:
由以上的計算可知,雖然,但兩者相差不大,且遠小于,即甲方案日薪收入波動相對較小,所以小明應選擇甲方案.
答案二:
由以上的計算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應選擇乙方案.
【題型】解答題
【結(jié)束】
20
【題目】已知橢圓: 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當時, 的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三個內(nèi)角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長,根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因為,則.
(2)由正弦定理
∴, , ,
∴周長
∵,∴
∴當即時
∴當時, 周長的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,長軸長為.
(1)求橢圓的方程;
(2)點是以長軸為直徑的圓上一點,圓在點處的切線交直線于點,求證:過點且垂直于直線的直線過橢圓的右焦點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( )
A. 函數(shù)的圖象關(guān)于點對稱
B. 函數(shù)的圖象關(guān)于直線對稱
C. 函數(shù)的最小正周期為
D. 當時,函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一圓經(jīng)過點,,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)點是所在平面內(nèi)一點,下列說法正確的是( )
A.若,則的形狀為等邊三角形
B.若,則點是邊的中點
C.過任作一條直線,再分別過頂點作的垂線,垂足分別為,若恒成立,則點是的垂心
D.若則點在邊的延長線上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線,曲線,點,以極點為原點,極軸為軸正半軸建立直角坐標系.
(1)求曲線和的直角坐標方程;
(2)過點的直線交于點,交于點,若,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com